Cutting edge: Systemic risk

Systemic risks in CCP networks

Russell Barker, Andrew Dickinson, Alex Lipton and Rajeev Virmani propose a model for the credit and. liguidity risks faced by
clearing members of central counterparty clearing houses (CCPs). By considering the entire network of CCPs and clearing
members, they investigate the distribution of losses to default fund contributions and contingent liquidity requirements for

each clearing member

ince the financial crisis of 2007—10, the number of trades and the
range of products that are cleared by central counterparty clearing
houses (CCPs) have increased enormously.

There is a clear need for banks to assess any potential impact of defaults
of general clearing members (GCMs) through the CCP network and, in
particular, on themselves. However, understanding the risk is a challenge,
since it requires understanding the contingent cashflows between a large
number of agents (hundreds of GCMs and multiple CCPs): see figure 1
for an example of a real-world CCP network. Further, the interrelation-
ship between the GCMs via the CCPs is a complex one, which requires
capturing the dynamic evolution of variation margin (VM), initial margin
(IM) and default fund (DF) contributions as well as porting trades in the
event of a member default and allocating default losses. Further, the fact
that a particular GCM’s CCP activity may only represent a fraction of
their broader economic activity should be captured. Although the system
is too complex to analyse using analytically tractable models, it is viable to
develop simulation models that capture the contingent cashflows between
all agents (including those related to margining and defaults) and address
the following important issues related to the broader application of central
clearing to over-the-counter derivatives portfolios:

potential systemic risks and contagion introduced by the interconnected
nature of the system;

liquidity issues driven by profit and loss (P&L), changes in margining,
losses due to default and CCP recapitalisation;

the connection between market volatility and default likelihood;

the identification of the key points of failure; and

the magnitude of scenarios proving sufficiently large in order for a given
clearing member to incur a loss or suffer liquidity issues.

One of the novel aspects of the model proposed-in this paper is the
fact that it considers the entire network of CCPs and GCMs — which,
given its size and complexity, is somewhat challenging — and yields some
important insights. There are material cross-risks between the default of
GCMs and market volatility that must be captured in order to realistically
assess default losses and contingent liquidity requirements. Our results do
not support the fear that a move from bilateral clearing to central clearing
of OTC derivatives-poses a significant threat of contagion through the
CCPs, which is primarily attributable to the magnitude of risks being
a comparatively small proportion of the capital held by the diversified
financial institutions:.dominating the CCP membership.

A wide variety of models has been developed in order to quantify the
potential exposureof CCPs. These models can be divided into three main
categories: statistical, optimisation and option-pricing-based models. Stat-
istical models typically assume simple underlying dynamics, such as geo-
metric Brownian motion (GBM), and derive the probability for the IM to
be exceeded within a given time horizon. Optimisation models, as their

name suggests, try to set margins in.a way that achieves an appropriate
balance between the resilience of CCPs and the costs to their members.
Option-pricing-based models capitalise on the fact that the exposure profile
of a CCP is approximately equivalent to the payoff of a strangle, repre-
senting a combination of a call and a put option. A GCM has a theoretical
opportunity to default strategically if the contract loses more value than
the posted IM.

Since the most important problem from the CCP standpoint is to analyse
losses conditional on exceeding margin, extreme value theory (EVT) is
well suited for this purpose. While it is relatively easy to use EVT to set up
margins for asingle contract, it is much more difficult at a portfolio level;
hence, CCPs tend not to use EVT directly. Accordingly, in many cases
CCPs use either the Standard Portfolio Analysis of Risk (Span) methodol-
ogy (see Kupiec 1994) or value-at-risk methodology (see Barone-Adesi,
Giannopoulos & Vosper 2002).

Several recent contributions to studying systemic risk in CCPs are worth
mentioning. Duffie & Zhu (2011) discuss the premise that the central
clearing of derivatives can substantially reduce counterparty risk, while
Glasserman, Moallemi & Yuan (2014) consider systemic risks in markets
cleared by multiple CCPs. Borovkova & El Mouttalibi (2013) analyse
systemic risk in CCPs by utilising a network approach and conclude that
stricter capital requirements have a clearer and stronger positive impact on
the system than mandatory clearing through CCPs. Elouerkhaoui (2015)
and Crépey (2015) develop a method for calculating credit value adjust-
ment (CVA) for CCPs using a collateralised debt obligation (CDO) pric-
ing approach by defining the payoff of the CCP’s waterfall and using the
Marshall-Olkin correlation model to compute it. Cumming & Noss (2013)
assess the adequacy of CCPs’ default resources from the perspective of the
Bank of England, and argue the best way to model a CCP’s exposure to a
single GCM in excess of its IM is by applying EVT. Finally, Murphy &
Nahai-Williamson (2014) discuss approaches to the analysis of CCP DF
adequacy.

Although a lot of advances have been made in the recent literature, we
feel some of the most important features of the CCP universe have been
missed. The first is the feedback mechanism that intrinsically links GCM
default, market turbulence and liquidity calls on market participants. The
second is the individual nature of different clearing members, from large
diverse financial institutions, where markets will make up a minority of
their business, to proprietary funds, for which a default event will be driven
purely by margin calls on cleared trades. The third is the interconnected-
ness of the CCPs themselves, which means it is important to model the
network in its entirety. Finally, it is important to model the changes in IM
and DF requirements as the system evolves; this is particularly important
when modelling liquidity considerations.
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1 An example network of CCPs (coloured circles) and GCMs (black dots), with corresponding coloured edges denoting membership
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In our approach, we use the minimum amount of information necessary Margin calculation

to analyse the risk of contagion or a liquidity crunch in the CCP framework,  CCPs set up extensive processes to manage the default of any GCM;
but we still build a realistic simulation of what might occur in a stressed
situation. For each GCM and CCP, we need to model the loss over IM
and DF if that GCM were to default in a specific market scenario as well
as how to distribute that loss to other GCMs. We also need to be able to
model the circumstances of a‘GCM default given a market scenario and
link this to the reduction in the GCM’s capital due to losses on a number
of CCPs.

In this paper, we develop a simulation framework to investigate the risks

this includes requiring their GCMs post an IM and a DF contribution,
along with a VM, in order to cover the mark-to-market (MtM) moves
of the exposures, together with a risk waterfall process that stipulates
how any eventual losses would be distributed among the defaulting clear-
ing member, the non-defaulting members and the CCP itself. Given a
set of market data and a portfolio of trades, we need to be able to cal-
culate the VM, IM and DF for the total set of GCM portfolios on a
given CCP.

associated with central clearing. The paper is structured as follows. First, )
We represent the state of the market at time ¢ by:

we discuss margining and its modelling. Next, we present the process by
which we generate the portfolios of clearing members given the partial
: ; : : X(1) = (X1(0)..... Xn ()T
information a particular GCM possesses. Then, we present the simula- s An

tion of the underlying market variables and the feedback mechanism used

to generate realistic co-dependence between volatilities and defaults. We =~ where X; (¢) represents a financial quantity such as a par swap, spot for-
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present numerical results in the penultimate section and conclude with the
ultimate section.
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eign exchange rate, credit spread, etc. We describe the generation of these
scenarios below.



The incremental VM called over the time interval [t;, ;1] for the
portfolio held by GCMy, with CCP;, is given by the change in MtM:

GCMy

VMcce,

GCMg
(li+1) - VMCCij (ti)

ccp;
PE@geny

V(X (ti+1): ti+1) — Vo (X (1), 1)

where the summation is over all trades, ¢, in the portfolio that GCM
holds with CCP; at time #;, and Vg (X (1), 1) is the value of trade ¢ at time
¢ in market state X (7).

‘We need to construct a fast method for calculating the IM of GCM}, on
CCP;, based on its portfolio and the market at time #;. In our model, we
used the specifications given by the individual CCPs for calculating both
IM and DF. These can be significantly different across CCPs, so it is impor-
tant to use the methods as prescribed by the CCPs themselves. Generally,
the IM is dominated by a VAR/conditional VAR (CVAR) component of
the portfolio over a set of market changes, derived from a historic time
period that is supplemented by a set of deterministic add-ons for liquidity,
basis risk, etc. We split the IM into a VAR/CVAR component and a set of
add-ons. In practice, the VAR/CVAR component is calculated across the
portfolio losses as follows:

a set of scenarios is created by looking at a set of five-day change-in-
market data over some historic period;

these changes are weighted by a multiple of the ratio of current to
historic realised volatility;

new scenarios are created by using the current market data and the set
of market changes to calculate the five-day loss on the portfolio for'each
scenario; and

the VAR or CVAR is calculated by using these.

We calculate separately the VAR/CVAR component using regression
against a collection of representative portfolios. We then apply the add-
ons deterministically. First, we evaluate the IM on a set of portfolios that
are sufficiently small so as not to incur any add-ons, and the IM on these
is calculated using the full IM calculation process. Second, the IM for the
current portfolio is calculated as:

IMS%" (t) = VAR({X (u)}u<si a(t)) +AddOn(r) (1)

where a(t) = (a1(?),...,an(t))T represents the regression coefficients
of the portfolio held at time ¢ against the small benchmark portfolios for
which IM has been calculated in the first step. VAR ({X (1) }u<r; a(2))
represents the VAR component of the IM for a portfolio represented by
these regression coefficients and adjusted for new simulated market data.
This takes into account (a) the change in the ratio of current market to
historic volatilities, which can be estimated by keeping track of the historic
multiplier and adjusting appropriately, and (b) whether the new scenario
creates a loss largeenough'to replace one of the VAR or CVAR elements. !
The add-on is a deterministic function of the underlying portfolio specified

by each CCP. To take (b) above into account, we heuristically model the

' We assume aVAR/CVAR scenario does not roll off the historic period
specified; this is a reasonable assumption, as most CCPs include the 2007—
12 period and have ensured this will not drop out of the historic period in
the near future, and the time horizons for our simulations are around one
year.
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historical loss distribution of the portfolio by a one-parameter family of
distributions (such as the family of centred Gaussian-distributions), fitted
to the level of the IM at the previous time step, and update according to
whether the realisation of the loss over the current time step is sufficiently
extreme.

The total default fund at time ¢ is given by a ‘Cover 2’ principle:

DFccp;, (t)
GCM GCM; +
= max max | LOIM 4% (¢,6) 4 LOIM -~ / (t,0) — K, ]
oeS; kAl [ cep;. (- 9) ccp, (1,0) = Kcep,

where the maximum is over all stress scenarios, S s for CCP ' and dis-
tinct pairs of (surviving) GCMs; GCM,., GCM;, while the loss over IM,

LOIMS&% kK(t,0),1s given by:

LOIMEG ¥ (1. )

+
= [ Do W X (1) = Va1, X° () + IMCGp ¢ (r)]
$<Pccp  (©)

where-the summation is over trades, ¢, in the portfolio @gg\f k(t), and
Vgl(t, X9(1)), Vg (1, X (1)) are the values of ¢ at time ¢ in market state
X (1), with/and without the stress scenario, o, applied. We remark that,
although CCPs define a large number of stress scenarios, typically, there
are/comparatively few ‘binding’ scenarios, and the scenarios may be
replaced with a significantly smaller subset. This was tested by examining
thousands of actual and randomly generated realistic sets of portfolios to
see which scenarios generated the largest losses. A significant number of
the scenarios used by the CCP were never binding.

The method we used to allocate DF among the members was as pre-
scribed by the CCPs themselves.

GCM portfolios

In this section, we adopt the perspective of a particular (but arbitrary)
clearing member and discuss how it may assess its risks by making use of
the partial information available to it. It is not uncommon for a banking
group to have multiple subsidiaries, each of which is a distinct clearing
member. We write {GCM, }c g for these subsidiaries, whose positions
with each CCP are known to the group. To aid discussion, let us introduce
aname for this banking group: ‘XYZ Bank’. We refer to the gross notional
as the total notional over long and short positions, while the net notional
is the difference. The reader should note risks are ultimately determined
by net positions; hence, net notionals are of primary concern. However,
gross notionals provide useful and important information on accumulated
historical volumes.

Although XYZ is potentially exposed to the positions of other members
in the event of their default, the positions of other members are unknown.
However, gross notionals for certain categories of derivatives, aggregated
across all members, are published by the CCP, where the categories are typ-
ically discriminated by the type of trade, currency and tenor. For example,
a CCP may publish the aggregate gross notional for fixed versus six-month
Euribor swaps for tenors in the range two to five years (alongside other
aggregates). We wish to make use of these aggregate gross notionals as
a measure of the relative scale of the exposures of the CCP in different
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trade types, currencies and tenors. For this reason, it is appropriate to align
our methodology to the categorisation used by the CCPs when reporting
aggregate gross notionals. Below, we will fix a particular category w € IT,
where [T represents the set of all categories used by the CCP to disclose
aggregate gross notionals.

To assess XYZ'’s risks, we propose a randomisation scheme to explore
the space of valid configurations of the unknown positions of other GCMs,
subject to the constraints of reproducing the known information: values
related to XYZ’s positions and the aggregate gross notionals published
by the CCPs. To each GCM, k, we assign a rank J; € {1,...,n}, based
upon data sourced from publicly available information, such as financial
statements. We then fit a two-parameter exponential distribution to the
gross notional of the members, motivated by the analysis of Murphy &
Nahai-Williamson (2014):

n

D BT exp(—a"Ji) = N™
k=1
Z B” exp(—a” Jp) = Ng
keK

where K is the set of indexes of XYZ’s members, while N and N % are
the gross notional amounts for category 7 aggregated over all members
and XYZ’s members, respectively. The system is solved numerically for
a, BT, and we abbreviate the fitted net notional for k as:

N = B exp(—a™ Jj)

We generate randomised net notionals, {AZ }]’é such that long and short

=1’
positions net:

n
Y AE=0
k=1
and:

A7 € [-RN[,RN[] forallk
A =67 forallk € K )
where R € [0, 1] is a parameter controlling the relative size of the net
and gross positions, and {3y };c g are the known net positions for XYZ.
R may be thought of as a proportional trading delta limit. For reasons
of parsimony, we assume the parameter does not depend upon the GCM,
k, or the product classification, 7. Of course, this assumption could be
weakened if appropriate.

Introduce the negative total-sum of all known positions, AT =
— Y kek 0% ; define the ratio r™ = A7/ > k¢x NT;and use it to pro-
portionally allocate A” among GCMs with k ¢ K, AT = r™ N;7. With-
out loss of generality, we assume |r”| < R. For each k ¢ K, consider
[=(R —|r™]), (R — |r™])] and generate independent
random numbers u;cz , uniformly distributed on / ,f . Define the following

the interval / If

quantities:

Uﬂ

T
W_W

U™ = Z uy N
kK

VT = Z u,’gN,owO,
k¢K

where y is the indicator function. Since ”Z possesses a density, it is clear
VT 2 0 almost surely, W7 is well defined and 0 < W7 < 1. Define the
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net position of the kth GCM as follows:
AF = AF +uf (L= W7 pyzrynsg) N
= (r” + ll]j:(] - WnXuZU”>O))N]f

In words, we proportionally reduce positions for GCMs with u”c’ that have
the same sign as U™, and we keep positions for other GCMs fixed. A
simple calculation yields:
_ U™ _
D AT =ATHUT - VT = AT
k¢K
|AF 1= 1AF — AF + AT S |AR= AT+ |AF]
< Jul + IPEINF SR = [P [+ PP DNE = RN

so both conditions for AZ ,k ¢ K, are satisfied.

Scenario generation
In this section, we describe the model for the underlying market variables
that is used to evolve the system of GCMs, given the initial positions
generated, according to the scheme presented above. We wish to ensure
the model is‘rich enough to support jumps, allowing for comparatively
large changes on short time scales, including systemic jumps that affect
all market variables simultaneously. We reflect that periods of high default
rates, will ' be accompanied by high market volatility (as was observed
during the crisis). For these reasons, we will propose a regime-switching
model, with regimes driven by the number and size of realised defaults.
B Regime-dependent drivers. For each GCMy,, we introduce a weight
wy > 0, which represents the financial significance of the GCM to the
others and is normalised so ) ; wy = 1. Practically, we set these weights
to be proportional to the balance sheet assets of each GCM.

We introduce a stress indicator, Z;, by:

g = Z wke—@g {t_tk})(tk <t
k

which yields a value between 0 and 1, representing the materiality weighted
defaults prior to time ¢; t is the default time of GCMy, and 05 represents
arate of mean reversion from a stress state to equilibrium. It will be set as
1 in what follows.

We introduce some thresholds 0 < m; < my < --- < mg = 1 that
determine the stress state, and we define the stress state process, & t'" , which

takes its value in {1, ..., S}, by:
gm 1, Ersm
m—
I, mi—1 <& <mj,i=2
We introduce 1 = A; < --- < Ag, which represents volatility

multipliers in each of the S stress states.
m
‘We consider Brownian drivers, WtS , with regime-dependent volatil-

m
ities, so, conditional on the stress state £™, the volatility of W,E is

S!’n : m m
dwE” wEy, = Afm di
t
Similarly, we consider a regime-switching compound Poisson driver,
m
Ny
son process is AAS;n. The jump distribution is as proposed in Inglis et al

, where, conditional on the value of & t’”, the intensity of the Pois-

(2008), being equal in distribution to the random variable:

e —1



where Z ~ N(u, o). The Poisson driver is compensated so as to be a
martingale:
EI" sl}l
(Nu =Ny | «]=0

foru >t.

We remark that the underlying simulation generates the regime-
dependent Wiener and Poisson processes via a numerical scheme that is
based on superposition of the standard Wiener and Poisson processes over
a regime-dependent number of states. This ensures comparability across
different regimes for a particular realisation.

‘We describe the usage of these drivers below. Note losses on default and
liquidity drains are primarily driven by increments in the value of portfolios
over short time horizons; for this reason, questions related to measure-
dependent drifts and second-order convexity adjustments are neglected.
We assume all processes are sensitive to a common regime-dependent
Poisson process, which we denote by NtS ys,s"“
B Rates process. Interest rates in the ith economy are simulated by

analogy to a simple two-factor Hull-White model:
drl = dgl +dX} +dX2 + Biri_dNDSE" i anE"

where qﬁf is deterministic (used to fit the initial term structure); X ,1 X ,2

are Ornstein-Uhlenbeck processes, driven by regime-dependent correlated

m m

Wiener processes th’é s Wtz’é

are used to control the relative volatility of rates of different tenors and

sys,£M 1€
N; , N;

sated, regime-dependent Poisson processes of the form considered above,

of the form considered above, which

intra-curve spread volatilities; are compound, compen-
representing a systemic (respectively idiosyncratic) jump process; f; rep-
resents the sensitivity of rates to the systemic jump process;yand ¢ — denotes
the left-hand limit. As described below, we calibrate the parameters to
historical, rather than implied, market data.

Market observables (swap rates, Libor rates) are calculated from the
state (X tl, X ,2) by applying the functional forms derived from the cor-
responding (affine) two-factor Hull-White model(without feedback and
jump terms).

The above model may be viewed as a minimally complex model that has
the following key features: (a) jumps, so as to allow extremal events over
short time periods; (b) regime-dependent volatilities and intensities, so as
to capture the natural increasing co-dependence with defaults; (c) intra-
curve spread volatility, so as to ensure.a reasonable P&L distribution for
delta-neutral steepener/flattener positions.

B Forex process. We model the spot forex analogously, with the spot
forex between the i th and jth being governed by:

. N, (e V. m S em
dx =gl x tht,J,E B X dNtsys,E + x5 dNt”/’s
3

is a deterministic function of time, B; ; is the sensitivity to

where a;’j
the systemiC jump process N,Sys’sm and N,i & is an idiosyncratic jump
process independent of all else conditional on £™.

We model the non-CCP assets of the kth

GCM by a process of the same form as in (3):

H Non-CCP asset process.

dak = ok ak aweE" 4+ g ak_anDoE" 4 Ak Nk

where each parameter is analogous.
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B Default events. The default of each GCM is then determined by
a structural model inspired by the Merton-Black-Cox model. More pre-
cisely, the default time of the kth member is determined as the hitting time

of the total position of CCP-related and non-CCP related activities:
7 = inf{r > 0: CF — ¥+ 4% < B}

where Bl‘ is a deterministic barrier, A’f is'as above and represents non-
CCP assets and Ctk - Cé‘ is the net cashflow due to CCP-related activities
(see below). The barriers are calibrated numerically so as to reproduce
target default probabilities.

According to the business:model of the member, the contribution to the
volatility of a particular member’s net assets attributable to CCP-related
activity, C¢, and non-CCP-related activity, Ay, may vary considerably
among members. Itis-useful to categorise members as follows: (a) large
diversified financial institutions, whose assets are dominated by non-CCP
related activity, A¢; (b) large markets-driven houses, in which the trading
book makes up a significant part of their business, and for which the
volatility of Cy is substantial relative to that of A;; and (c) trading houses,
for which the volatility of C; may exceed A;.

Once the total loss for a given CCP has been calculated, we need to dis-
tribute the losses across the remaining GCMs and go through the standard
waterfall process. In reality, the method applied will vary considerably
between CCPs and depend on the outcome of the auction process, which
is not amenable to fine modelling. Instead, we simply distribute the losses
among the surviving GCMs in proportion to their IMs, as though all surviv-
ing GCMs bided equally in the auction process. Similarly, we redistribute
the net positions among all surviving members, proportionally to the size
of their IM.

Finally, we need to consider how to model a situation in which the
losses exceed all of the CCP’s buffers. Namely, the losses exceed the
total DF and any ‘end of the waterfall’ mitigation measures the CCP
has in place. We make the assumption surviving GCMs will make good
the variation on the value of cleared trades up to the time of default
of the CCP; then, at this point, all trades cleared on the CCP will be
unwound at par. All losses will be divided in the ratio of the surviving
GCM’s closing IMs. As there has never been a major CCP default, it
is difficult to say how realistic this resolution is. However, the authors
of this paper believe it to be a reasonable and parsimonious modelling
assumption.

We may summarise this mathematically as the incremental cashflows
being represented by:

GCMg GCM,
ck-ck=-Y IMccp/ (1) = Mccp,* (0)
CCP;
GCM GCM
+ ) VMccp, (t) = VMccp ) (0)
CCP, ‘
— > > LossIMDFCGp (1, ti41)
CCP; tjy1<t

where the summation is over all CCPs, and IMSS%’( (1). VMgggj_ k(1) are

the IM and VM margins. LossIMDF(C}ggi K(ti, tix1), the loss over IM and
DF for a CCP; over time interval (4;, t;}l], allocated to GCM, is given
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by:
LossIMDFCcp* (1, 1i+1)
CCP;
Xt =1 IMgen,

CCP;

= ————5—LossIMDFcce, (¢4, 1 4+1)
21 x=tMgey,

with the total loss over IM and DF for CCP; given by

LossIMDFccp; (/4. +1)

= X 2

I getititl ¢E¢gg]§4_1 )
J

(Vo ti+1) = V(i)

GCM GCM .
+ IMCCPJ-I (t) + DFCCPjI ([i))

with the summation over those GCMs (if any) that have defaulted in the
time interval (#;,t;+1]. The length, #; 1 — ¢;, of time intervals in the
simulation is aligned with the time horizon corresponding to the VAR
methodology of the CCP (typically five business days).

Results

In this section, we present results for a realistic configuration of the model.
We employ the perspective of a generic general clearing member, ‘XYZ
bank’, which proxies one of the ‘big four’ US banks in scale but has
anonymised positions that are set to be a fixed proportion of the outstanding
gross notional of each of LCH.SwapClear and CME for US dollar and
euro fixed-float swaps. It is supposed there are 101 clearing members;
each belonging to both CCPs.

The authors accept that, due to the complexity of the CCP network, the
modelis of necessity large and complicated, and its calibration does require
making some conservative assumptions. However, we feel the model is
both realistic in terms of dynamics and robust in terms of the choices
made, so we feel confident in the legitimacy of any derived results. There
are several aspects requiring calibration. We give a brief overview of the
techniques used to calibrate the various sections. Further details can be
found in Barker, Dickinson & Lipton (2016).

The market is driven by a switching between sets of jump diffusion
processes. In our example, there are two states that are differentiated by
a volatility multiplier. This volatility multiplier.is set.to'2, which is a
conservative reflection of the change in market volatility during the global
financial crisis, where the volatility for rates processes rose by up to 1.5
times. The underlying processes are calibrated to the current two-year
and 10-year swap rates and historic volatility. This is done in a three-
stage process. First, we calibrate the dynamics without jumps analytically.
Next, we use a fixed-point iteration to calibrate the model, excluding the
feedback mechanism. Finally, we use the minimal entropy technique to
calibrate the model’s full market dynamics to the required targets.

For the largest GCMs, we use the most recent published financial state-
ments to fit the initial levels of non-derivative assets. We then use the
levels of one of the mid-size GCMs as a proxy for the rest. The authors
accept that financial information is only available periodically, so it only
gives a snapshot in time, but we feel this is the best information available:
trying to pull further information from market-observable assets such as
credit default swaps (CDSs) would just add unnecessary complexity and
not give any more genuine information. This is reasonable, as it will be
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Logarithmic plots of CCDF
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(a) Ratio of losses due to default to equity (%) of XYZ bank at a time
horizon of one year with and without feedback. (b) Ratio of terminal
IM-initial IM to equity (%) over both CCPs of XYZ bank at a time horizon
of one year for different model configurations.

the largest GCMs that contribute most to the stability of the system and,
therefore, require the most accurate modelling. Each GCM has its own
set of market dynamics; these are driven by a common factor, which is
calibrated to the volatility of a portfolio of financial institutions, and an
idiosyncratic factor, which is determined by the historic correlation of the
GCM’s share prices The GCM’s cleared portfolios are calibrated using
the portfolio generation method described above; the parameter R in (2)
is used to ensure we capture the total IM and DF reported by the vari-
ous CCPs and, hence, the DFs of any known GCM. Recall that, since we
are using known actual portfolios where available, in this case, as we use
the actual IM calculation methods employed by the various CCPs, we are
guaranteed to get the correct IMs. The barriers described in the ‘Default
events’ section are calibrated numerically to implied default probabilities.

‘We wish to consider the distribution at a one-year time horizon of (1) the
losses due to defaults (of other GCMs and CCPs) and (2) the potential
liquidity drains on XYZ bank. These distributions are scaled by the share-
holder equity of XYZ bank, since we wish to size the relative significance
of losses to capital buffers and understand the qualitative impact of feed-
back on the loss distribution. For the purposes of the example presented
here, we set this to $200 billion, approximating the magnitude of the
shareholder equity of a ‘big-four’ US bank.



Although we employ the perspective of XYZ bank, we reiterate that we
take into account the contingent cashflows between all agents in the CCP
network. We study the dependence of these distributions in different con-
figurations: defaults with the feedback-based regime-switching (‘Feed-
back’ in figure 2), defaults only (‘Default only’) and no defaults (‘No
default’). We have made use of a minimal entropy path-reweighting algo-
rithm to guarantee the expected stress indicator, [Z1], is held fixed as we
change the settings of our feedback mechanism. We do this to ensure com-
parability of the results across configurations. The plots in figure 2 show
the complementary cumulative distribution functions with the y-axis on
a logarithmic scale, so, for example, a y-value of 0.01 corresponds to a
99% quantile of the loss distribution.

Figure 2(a) presents the simulated distribution of the ratio of the losses
due to default (across all of XYZ’s members and CCPs) to XYZ’s share-
holder equity. It demonstrates two key points. First, the effect of feedback
dramatically amplifies the tail of the loss distribution due to default, which
reflects the importance of capturing the natural wrong-way risk between
defaults and market volatility. Second, even taking into account the inter-
connected and complex relationships between the agents of the CCP net-
work, and making conservative assumptions concerning the relationship
between defaults and market volatility, the scale of the losses is unlikely
to threaten the survival of a well-diversified and well-capitalised financial
institution.

Figure 2(b) presents the simulated distribution for the ratio of the addi-
tional aggregate IM to shareholder equity required by XYZ bank, posted to
the two CCPs in the system. This captures the effect of new extremal events
entering the VAR lookback period as well as potential increases in‘port-
folio size due to the porting of defaulting members’ portfolios. The results
demonstrate the significance of capturing the likely increase.in volatility
in stressed market conditions; further, they indicate that, in dollar terms,
liquidity drains due to margining are likely to exceed losses due to default.

Conclusions
Understanding the risks associated with central clearing is technically
challenging, since it requires understanding a large network of GCMs
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