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In this paper, we study the classical problem of the first hitting time density to a moving boundary for
a diffusion process, which satisfies the Cherkasov condition, and hence, can be reduced to a standard
Wiener process. We give two complementary (forward and backward) formulations of this problem
and provide semi-analytical solutions for both. By using the method of heat potentials, we show how
to reduce these problems to linear Volterra integral equations of the second kind. For small values
of t, we solve these equations analytically by using Abel equation approximation; for larger t we
solve them numerically. We illustrate our method with representative examples, including Ornstein–
Uhlenbeck processes with both constant and time-dependent coefficients. We provide a comparison
with other known methods for finding the hitting density of interest, and argue that our method has
considerable advantages and provides additional valuable insights. We also show applications of the
problem and our method in various areas of financial mathematics.

Keywords: First hitting time density; Cherkasov condition; Method of heat potentials; Volterra
integral equation; Abel integral equation; Ornstein–Uhlenbeck process; Pairs trading

1. Introduction

Computation of the first hitting time density for a diffusion
process is a long-standing problem, which is still a subject
of active research. Particular examples are the hitting prob-
lem for a Wiener process to a curvilinear boundary and the
hitting problem for an Ornstein–Uhlenbeck process with a
straight boundary. An abstract approach applicable to this
problem has been found by Fortet (1943); Fortet’s equation
can be viewed as a variant of the Einstein–Smoluchowski
equation (Einstein 1905, Von Smoluchowski 1906). A general
overview can be found in Breiman (1967), Horowitz (1985),
and Borodin and Salminen (2012). More recently, Di Nardo et
al. (2001) developed numerical approaches for first passage
problems for a general Gauss–Markov process. The authors
reduced the problem to an integral equation of Fortet type and
solved it numerically. In parallel, Daniels (1996), Novikov et
al. (1999), and Pötzelberger and Wang (2001) derived a for-
mula for a piece-wise linear barrier and used it to develop a
numerical method for general curved boundaries by virtue of
their piece-wise linear approximation.

*Corresponding author. Email: alexlipt@mit.edu

For certain choices of diffusion processes and the cor-
responding barriers, analytical solutions have been found.
For instance, for a standard Wiener process, it is easy to
derive a closed form formula for a linear boundary. A square-
root boundary is much harder to handle, but Shepp (1967)
and Novikov (1971) managed to describe the corresponding
density and moments expansion in terms of special func-
tions (parabolic cylinder functions and Hermite polynomi-
als). Attempts to find an analytical result for an Ornstein–
Uhlenbeck (OU) process have been made since 1998 when
Leblanc and Scaillet (1998) first proposed a closed-form for-
mula, which, as it tuned out, contained an error. Two years
later, Leblanc et al. (2000) published a correction on the
paper; unfortunately, the correction itself was erroneous as
well. The authors thought that the density in question can
be expressed as the Laplace transform of a functional of
a three-dimensional Bessel bridge, but Göing-Jaeschke and
Yor (2003) noticed that they had incorrectly used a spatial
homogeneity property for such a bridge. It is worth not-
ing that the same conclusion can be obtained much more
straightforwardly by calculating the CDF and showing that it
asymptotically exceeds unity for some values of parameters.

Given the time-independence of the hitting density problem
for an OU process with flat boundary, it is natural to attack

© 2020 Informa UK Limited, trading as Taylor & Francis Group
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this problem by using the Laplace transform, see, e.g. Riccia-
rdi and Sato (1988), Linetsky (2004), and Alili et al. (2005).
In particular, Alili et al. (2005) gave several complementary
representations: a series of parabolic cylinder functions and
its derivatives, an indefinite integral representation via spe-
cial functions, and a Bessel bridge representation. The first
approach is based on inverting the Laplace transform, which
is computed analytically and results in a series representa-
tion involving parabolic cylinder functions and their deriva-
tives. The second approach is based on the cosine transform
and its inverse and produces an indefinite integral involving
some special functions and is computed using the trapezoidal
rule. The third approach gives a representation of the den-
sity via an expectation of a function of the three-dimensional
Bessel bridge, which can be computed using the Monte Carlo
method. Linetsky (2004) gave an analytical representation via
the relevant Sturm–Liouville eigenfunction expansion. The
coefficients were found as a solution of a nonlinear equation,
which involved nonlinear special (Hermite) functions. The
main disadvantage of this approach is that it requires one
to solve a separate nonlinear equation to find each new
coefficient.

A recent paper by Jiang et al. (2019) studied the
joint distribution and the multivariate survival functions
for the maxima of the OU process as well as for gen-
eral Markov processes with time-dependent barriers. The
authors adopted the expansion results described above; for the
case of time-dependent coefficients and barrier, they approx-
imated these by piece-wise constant functions and devel-
oped a numerical method by solving the problem on each
interval.

An important breakthrough was achieved by Martin et
al. (2015), who solved a nonlinear Fokker–Planck equation
with a steady-state solution by representing it as an infi-
nite product rather than as usual an infinite sum. The
PDE, which corresponds to the transition probability of the
Ornstein–Uhlenbeck process, belongs to the class of equations
described in Martin et al. (2015). In principle, the results of
that paper can be modified to compute the first time hitting
density. An advantage of this method is that it allows quan-
tifying the errors; thereby controlling the number of terms
required to reach a given precision. More recently, Martin et
al. (2019) developed a short- and long-time asymptotic expan-
sion for the OU and other mean-reverting processes based on
similar principles.

All the methods described above require substantial numer-
ical computations, and for some of them, the convergence rate
is unknown. Moreover, most of them are difficult to imple-
ment. For instance, Cheridito and Xu (2015) preferred the
Crank–Nicolson method to other known analytical methods,
because it is easier to implement.

In this paper, which is an extension and improvement of
Lipton and Kaushansky (2018), we develop a fast and eas-
ily implementable semi-analytical method to compute the first
time hitting density of a general diffusion process of the
Cherkasov type. We give particular examples for the cases
of a Wiener process and time-dependent Ornstein–Uhlenbeck
processes.

The main idea is as follows: after an appropriate change
of variables, the corresponding PDE becomes a heat equation

with a moving boundary, which can be solved by using
the method of heat potentials (Lipton 2001, Section 12.2.3,
pp. 462–467). As usual, the method of heat potentials leads
to a Volterra equation of the second kind, which can be
solved numerically, see Lipton et al. (2018) and Lipton and
Kaushansky (2018). As a result, we obtain recursive formu-
las to compute the corresponding hitting density. It is also
worth pointing out that for the case of an Ornstein–Uhlenbeck
process, our method is able to deal with time-dependent coef-
ficients, while the methods which are based on the Laplace
transform are only able to deal with the case of constant
coefficients.

Below we discuss several important financial applications
of our method, including barrier options pricing, pairs trad-
ing, and credit risk modeling. The latter results generalize
the work of Hyer et al. (1999), Hull and White (2001), and
Avellaneda and Zhu (2001) who analyzed a structural default
model and developed numerical methods to find the default
boundary knowing the corresponding default probabilities.

The rest of the paper is organized as follows: in Section 2
we formulate the problem and eliminate parameters using a
change of variables; in Section 3 we give our main results;
in Section 4, we illustrate our results on several important
and informative examples: Wiener process, Geometric Brow-
nian motion, Ornstein–Uhlenbeck process; in Section 5 we
consider a numerical solution for the corresponding Volterra
equation as well as a solution as an approximation by an Abel
equation; in Section 6 we give numerical illustrations and
compare the methods; in Section 7, we show important appli-
cations of our method in financial mathematics; in Section 8
we conclude.

2. Problem formulation and initial transformations

2.1. First hitting time density for a Wiener process

Consider the distribution of the hitting time of a Wiener
process with W0 = z of a given time-dependent barrier b(t):

s = inf {t : Wt = b(t)} , z �= b(0).

Forward problem. Using Feynman–Kac formula, the tran-
sition probability density satisfies

pt (t, x; z) = 1
2 pxx (t, x; z) ,

p (0, x; z) = δ (x − z) ,

p (t, b(t); z) = 0.

This distribution is given by

g (t, z) = �

2
px (t, b(t); z) , (1)

where

� = sgn(z − b(0)).

Backward problem. Alternatively, we can solve the cor-
responding backward problem for the cumulative hitting
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probability G(t, T , z). We can express it as

G(t, T , z) = E[1{∃s∈[t,T]:Ws=b(s)} | Wt = z]. (2)

Then, using Feynman–Kac formula, we can write correspond-
ing PDE

Gt (t, T , z) + 1
2 Gzz (t, T , z) = 0,

G (T , T , z) = 0,

G (t, T , b(t)) = 1.

(3)

Thus, the first hitting density is

g (T , z) = GT (0, T , z) .

2.2. First hitting time density of a Cherkasov process

Now consider a general diffusion satisfying the so-called
Cherkasov’s condition which guarantees that it can be trans-
formed into the standard Wiener process.

dXt = δ (t, Xt) dt + σ (t, Xt) dWt, X0 = z, (4)

which has been studied in Cherkasov (1957), Riccia-
rdi (1976), and Bluman (1980). The applications of Cherkasov
conditions in financial mathematics were studied in Lip-
ton (2001) in Section 4.2 and Lipton (2018) in Chapter 9.

We wish to calculate the distribution of the hitting time of
this process of a given time-dependent barrier b(t):

s = inf {t : Xt = b(t)} , z �= b(0).

Introduce

β (t, x) = σ (t, x)
∫ x 1

σ (t, y)
dy,

γ (t, x) = 2δ (t, x) − σ (t, x) σx (t, x)

− 2σ (t, x)
∫ x σt (t, y)

σ 2 (t, y)
dy,

where the lower limit of the integral is chosen as convenient.
Let

P (t, x) =
∣∣∣∣β (t, x) γ (t, x)
βx (t, x) γx (t, x)

∣∣∣∣ ,

Q (t, x) =
∣∣∣∣σ (t, x) γ (t, x)
σx (t, x) γx (t, x)

∣∣∣∣ ,

R (t, x) =
∣∣∣∣∣∣
σ (t, x) β (t, x) γ (t, x)
σx (t, x) βx (t, x) γx (t, x)
σxx (t, x) βxx (t, x) γxx (t, x)

∣∣∣∣∣∣ .

Assume that so-called Cherkasov condition is satisfied, so that

R (t, x) ≡ 0.

Then we can transform x into the standard Wiener process via
the following mapping

t̃ = t̃(t, x) =
∫ t

0
�2(u, x)du, (5)

x̃ = x̃(t, x) = �(t, x)
β (t, x)

σ (t, x)
+ 1

2

∫ t

0
�(u, x)

P (u, x)

σ (u, x)
du, (6)

where

�(t, x) = exp

[
−1

2

∫ t

0

Q (u, x)

σ (u, x)
du

]
. (7)

In particular,

z̃ = β (0, z)

σ (0, z)
. (8)

The corresponding transition probability density transforms

p(t, x; z) =
∣∣∣∣∂ x̃(t, x)

∂x

∣∣∣∣ p̃(t̃, x̃; z̃).

Moreover, the boundary transforms to

b(t) → b̃(t̃),

where

b̃(t̃) = �(t, b(t))
β (t, b(t))

σ (t, b(t))
+ 1

2

∫ t

�(u, b(t))
P (u, b(t))

σ (u, b(t))
du.

(9)
Whenever possible, below we omit tilde for brevity.

3. Main results

In this section, we consider four main theorems, which solve
forward and backward problems for a Wiener and a general
Cherkasov processes.

3.1. Forward problem for the Wiener process

Theorem 1 The hitting density (1) can be written as

g (t, z) = 1

2

∫ t

0

(
1 − 	(t,t′)

2

(t−t′)

)


(
t, t′

)
ν
(
t′
) − ν (t)√

2π (t − t′)3
dt′

− 1√
2π t

ν (t)

+ �

⎛
⎝−b′ (t) ν (t) +

(z − b (t)) exp
(
− (z−b(t))2

2t

)
2
√

2π t3

⎞
⎠.

(10)

where

	
(
t, t′

) = b (t) − b
(
t′
)

, t ≥ t′,



(
t, t′

) =

⎧⎪⎨
⎪⎩

exp

(
−	

(
t, t′

)2

2 (t − t′)

)
, t > t′

1, t = t′
.

and ν(t) is the solution of Volterra integral equation of the
second kind

ν (t) + �

∫ t

0

	
(
t, t′

)


(
t, t′

)
ν
(
t′
)

√
2π (t − t′)3

dt′ = −
exp

(
− (z−b(t))2

2t

)
√

2π t
.

(11)
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3.2. Backward problem for Wiener process

Theorem 2 Choose some positive T > 0. The CDF (2) can be
written as

G (0, T , z) = �

∫ T

0

(
z − b

(
T − t′

))
exp(

− (z−b(T−t′))
2

2(T−t′)

)
ν
(
t′, T

)
√

2π (T − t′)3
dt′, (12)

where

ν (t, T) + �

∫ t

0

× 	
(
T − t, T − t′

)

(T − t, T − t′)ν

(
t′, T

)
√

2π (t − t′)3
dt′ = 1.

(13)

Remark 3 Theorem 1 is easier to use because it allows one to
calculate g(t) in one go, while Theorem 2 requires solving a
different equation for every T, except of the trivial case b(t) ≡
b. However, Theorem 2 is useful if a particular point in time
is of interest, say T = ∞.

3.3. Forward problem for a general Cherkasov process

In this section, we formulate the result for a general pro-
cess (4) using the transformations from Section 2.2 and the
results of Section 3.1.

Theorem 4 The hitting density of a general Cherkasov pro-
cess can be written as

g(t, z) = dt̃(t, b (t))

dt
g̃(t̃, z̃), (14)

where g̃(t̃, z̃) is the hitting density of a Wiener process, t̃(t, x)
is defined in (5), b̃(t̃) is defined in (9), z̃(z) is defined in (8),
and

dt̃(t, b (t))

dt
= �2(t, b(t)) + 2b′(t)

∫ t

0
�(s, b(t))�x(s, b(t)) ds.

3.4. Backward problem for a general Cherkasov process

As in previous section, we extend the result from a Wiener
process to a general Cherkasov process.

Theorem 5 Choose some positive T > 0. The CDF of the
hitting time for (4) can be written as

G(T , z) = G̃(T̃ , z̃), (15)

where G̃(T̃ , z̃) is the hitting density of the transformed Wiener
process.

3.5. Proof of Theorem 1

Consider ϕ > 0. To find the hitting density, we use the method
of heat potentials (see Tikhonov and Samarskii 1963, pp. 530–
535; Lipton 2001, Section 12.2.3, pp. 462–467 for details). As

usual, we write

p (t, x) = H̃ (t, x, 0, z) + q (t, x) ,

where H̃(t, x, 0, z) is the standard heat kernel, while q(t, x)
solves the IBVP of the form

qt (t, x) = 1
2 qxx (t, x) ,

q (0, x) = 0,

q (t, b (t)) = −H̃ (t, b (t) , 0, z) .

Accordingly,

q (t, x) =
∫ t

0

(
x − b

(
t′
))

exp

(
− (x−b(t′))

2

2(t−t′)

)
√

2π (t − t′)3
ν
(
t′
)

dt′,

where ν is the solution of the Volterra equation of the second
kind,

ν (t) +
∫ t

0

	(t, t′)

(
t, t′

)
ν
(
t′
)

√
2π (t − t′)3

dt′

+
exp

((
− (b(t)−z)2

2t

))
√

2π t
= 0.

Assuming that ν(t) is found, we can proceed as follows:

p (t, x) = exp
(− (x − z)2 / (2t)

)
√

2π t
+ q (t, x) , (16)

Then, g(t) can be computed using (1) by differentiation
of (16) and taking its limit at b(t). We do the neces-
sary computations in Appendix, and arrive at the final
formula (10).

3.6. Proof of Theorem 2

Consider ϕ > 0. Fix T > 0. Consider the change of variables
τ = T − t with Ĝ(τ , T , z) = G(T − t, T , z) in (3). Then,

Ĝτ (τ , T , z) = 1
2 Ĝzz (τ , T , z) ,

Ĝ (0, T , z) = 0,

Ĝ (τ , T , b(T − τ)) = 1.

(17)

We got that Ĝ(t, T , z) satisfies the heat equation with moving
boundary and zero initial condition. As a result, as before, we
are able to apply the method of heat potentials. We get

Ĝ (τ , T , z)

=
∫ τ

0

(
z − b

(
T − t′

))
exp

(
− (z−b(T−t′))

2

2(T−t′)

)
ν
(
t′, T

)
√

2π (T − t′)3
dt′,
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where

ν (t, T) +
∫ t

0

(
	

(
T − t, T − t′

))

(T − t, T − t′)ν

(
t′, T

)
√

2π (t − t′)3
dt′

= 1.

As G(0, T , z) = Ĝ(T , T , z), we immediately get

G (0, T , z)

=
∫ T

0

(
z − b

(
T − t′

))
exp

(
− (z−b(T−t′))

2

2(T−t′)

)
ν
(
t′, T

)
√

2π (T − t′)3
dt′.

4. Representative examples

4.1. Linear boundary

This is a classical example, and considered, for example,
in Lipton (2001), among many others. Here, we provide an
alternative derivation using the theory we developed before.

When the boundary is linear,

b (t) = μ0 + μ1t, z > μ0,

the pair (ν(t), g(t)) can be calculated explicitly by skill-
fully using a combination of the direct and inverse Laplace
transforms. In other cases, it has to be calculated numerically.

Since

	
(
t, t′

) = μ1
(
t − t′

)
, 


(
t, t′

) = exp

(
−μ2

1

(
t − t′

)
2

)
,

we have

ν (t) + μ1

∫ t

0

exp
(
−μ2

1(t−t′)
2

)
ν
(
t′
)

√
2π (t − t′)

dt′

= −
exp

(
− (z−μ0−μ1t)2

2t

)
√

2π t
, (18)

g (t) = −
(

μ1 + 1√
2π t

)
ν (t)

+ 1

2

∫ t

0

(
1 − μ2

1

(
t − t′

))
exp(

−μ2
1(t−t′)

2

)
ν
(
t′
) − ν (t)√

2π (t − t′)3
dt′

+
(z − μ0 − μ1t) exp

(
− (z−μ0−μ1t)2

2t

)
2
√

2π t3
. (19)

By rearranging terms and using integration by parts, we can
rewrite (19) as follows

g (t) = −g1 (t) + g2 (t) , (20)

g1 (t) =
∫ t

0

exp
(
−μ2

1(t−t′)
2

) ·
ν
(
t′
)

√
2π (t − t′)

dt, (21)

g2 (t) =
(z − μ0 + μ1t) exp

(
− (z−μ0−μ1t)2

2t

)
2
√

2π t3
. (22)

The Laplace transform of (18), (21) yields

⎛
⎝1 + μ1√

2s + μ2
1

⎞
⎠ ν̂ (s)

= −
exp

(
− (z − μ0)

(√
2s + μ2

1 − μ1

))
√

2s + μ2
1

,

ĝ1 (s) = sν̂ (s)√
2s + μ2

1

.

Accordingly, by taking the inverse Laplace transform,

ν (t) = −
exp

(
− (z−μ0−μ1t)2

2t

)
√

2π t

+ μ1 exp (2 (z − μ0) μ1) N

(
− z − μ0√

t
− μ1

√
t

)
,

(23)

and

g1 (t) = −
(z − μ0) exp

(
− (z−μ0−μ1t)2

2t

)
2
√

2π t3

+
μ1 exp

(
− (z−μ0−μ1t)2

2t

)
2
√

2π t
.

Finally, we arrive at

g (t) =
(z − μ0) exp

(
− (z−μ0−μ1t)2

2t

)
√

2π t3
, (24)

as expected. When μ1 = 0, (24) trivially follows from the
method of images.

4.2. Time-dependent geometric Brownian motion

Consider a time-dependent geometric Brownian motion. Then

δ (t, x) = δ (t) x, σ (t, x) = σ (t) x,

β (t, x) = x ln x,

γ (t, x) = (
2δ (t) − σ 2 (t)

)
x − 2

σt (t)

σ (t)
x ln x,

P (t, x) =

∣∣∣∣∣∣∣
x ln x

(
2δ (t) − σ 2 (t)

)
x − 2

σt (t)

σ (t)
x ln x

ln x + 1
(
2δ (t) − σ 2 (t)

) − 2
σt (t)

σ (t)
(ln x + 1)

∣∣∣∣∣∣∣
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= − (
2δ (t) − σ 2 (t)

)
x,

Q (t, x) =

∣∣∣∣∣∣∣
σ (t) x

(
2δ (t) − σ 2 (t)

)
x − 2

σt (t)

σ (t)
x ln x

σ (t)
(
2δ (t) − σ 2 (t)

) − 2
σt (t)

σ (t)
(ln x + 1)

∣∣∣∣∣∣∣
= −2σt (t) x,

R (t, x) =

∣∣∣∣∣∣∣
σ (t) x x ln x
σ (t) ln x + 1

0
1

x(
2δ (t) − σ 2 (t)

)
x − 2

σt (t)

σ (t)
x ln x(

2δ (t) − σ 2 (t)
) − 2 σt(t)

σ (t) (ln x + 1)

−2
σt (t)

σ (t) x

∣∣∣∣∣∣∣∣∣∣
≡ 0.

Accordingly,

t̃ =
∫ t

0
exp

[
2
∫ u

0

σt (s)

σ (s)
ds

]
du

=
∫ t

0
exp [2 ln σ (u)] du =

∫ t

0
σ 2 (u) du,

x̃ = ln (x) −
∫ t

0

(
δ (u) − 1

2
σ 2 (u)

)
du,

b̃(t) = ln b(t) − δ̃(t̃) − t̃

2
,

z̃ = ln z,

where

δ̃(t̃) =
∫ t

0
δ(u) du.

Naturally, this is in agreement with Girsanov’s theorem.
Thus, using Theorem 4, we can express the solution:

g (t, z) = σ 2(t)

⎡
⎢⎢⎢⎢⎢⎢⎣

1

2

∫ t̃(t)

0

(
1 − 	̃(t̃(t),t̃′)

2

(t̃(t)−t̃′)

)

̃
(
t̃(t), t̃′

)
ν̃
(
t̃′
) − ν̃

(
t̃(t)

)
√

2π
(
t̃(t) − t̃′

)3
dt̃′

− 1√
2π t̃(t)

ν̃
(
t̃(t)

)

+ �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−b̃′ (t̃(t)) ν̃

(
t̃(t)

) +

(
ln z − b̃

(
t̃(t)

))
exp(

−
(

ln z−b̃(t̃(t))
)2

2t

)

2
√

2π t̃(t)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where

b̃′(t̃(t)) = 1

σ 2(t)

[
b′(t)
b(t)

− δ(t)

]
− 1

2
.

4.3. Time-dependent OU process

Consider a time-dependent Ornstein–Uhlenbeck process.
Then

δ (t, x) = λ (t) (θ (t) − x) ,

σ (t, x) = σ (t) ,

β (t, x) = x,

γ (t, x) = 2λ (t) (θ (t) − x) − 2
σt (t)

σ (t)
x,

P (t, x) =

∣∣∣∣∣∣∣
x 2λ (t) (θ (t) − x) − 2

σt (t)

σ (t)
x

1 −2λ (t) − 2
σt (t)

σ (t)

∣∣∣∣∣∣∣
= −2λ (t) θ (t) ,

Q (t, x) =

∣∣∣∣∣∣∣
σ (t) 2λ (t) (θ (t) − x) − 2

σt (t)

σ (t)
x

0 −2λ (t) − 2
σt (t)

σ (t)

∣∣∣∣∣∣∣
= −2λ (t) σ (t) − 2σt (t) ,

R (t, x) =

∣∣∣∣∣∣∣∣∣
σ (t) x 2λ (t) (θ (t) − x) − 2

σt (t)

σ (t)
x

0 1 −2λ (t) − 2
σt (t)

σ (t)
0 0 0

∣∣∣∣∣∣∣∣∣
≡ 0.

Accordingly,

t̃ =
∫ t

0
e2�(u)σ 2 (u) du,

x̃ = e�(t)x −
∫ t

0
e�(u)λ (u) θ (u) du,

b̃(t̃) = e�(t)b(t) −
∫ t

0
e�(u)λ (u) θ (u) du,

z̃ = z,

where

�(t) =
∫ t

0
λ (u) du.
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Then, using Theorem 4, we have

g (t, z) = e2�(t)σ 2(t)

⎡
⎢⎢⎢⎢⎢⎢⎣

1

2

∫ t̃(t)

0

(
1 − 	̃(t̃(t),t̃′)

2

(t̃(t)−t̃′)

)

̃
(
t̃(t), t̃′

)
ν̃
(
t̃′
) − ν̃

(
t̃(t)

)
√

2π
(
t̃(t) − t̃′

)3
dt̃′

− 1√
2π t̃(t)

ν̃
(
t̃(t)

)

+�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b̃′ (t̃(t)) ν̃
(
t̃(t)

) +

(
z̃ − b̃

(
t̃(t)

))
exp(

−
(

z̃−b̃(t̃(t))
)2

2t

)

2
√

2π t̃(t)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.4. Alternative transformation for the OU process

In this section, we develop an alternative transformation.
First, we show how to transform an OU process with
constant coefficients into the standard Ornstein–Uhlenbeck
process. Second, we demonstrate how to transform any time-
dependent process into the standard Wiener process.

We define the standard time-independent OU process

dx̄ = −x̄ dt̄ + dWt̄.

Transformation of an OU process with constant coefficients
to the standard OU process. Consider

dXt = λ(θ − Xt) dt + σ dWt.

By introducing new variables

t̄ = λt, X̄ =
√

λ

σ
(X − θ) , z̄ =

√
λ

σ
(z − θ) ,

b̄(t) =
√

λ

σ
(b(t) − θ) ,

we can rewrite the problem as follows

dX̄t̄ = −X̄t̄ dt̄ + dWt̄,

X̄0 = z̄,

s̄ = inf
{
t̄ : X̄t̄ = b̄(t)

}
,

Below bars are omitted for brevity whenever possible.
Transformation of a time-dependent OU process to the

standard OU process. Now consider the time-dependent
process,

dXt = λ(t) (θ(t) − Xt) dt + σ(t) dWt,

X0 = z.

We transform it into the standard process in two steps. First,
we introduce

x̄ = p
(
t̄
)

x + q
(
t̄
)

,

and notice that

dx̄ =
(

pλθ + q′ +
(
pλ − p′) q

p
−

(
pλ − p′)

p
y

)
dt + pσ dWt.

We impose the following constraints:

λθp + q′ +
(
λp − p′) q

p
= 0, q (0) = q0,

(
λp − p′)
σ 2p3

= 1, p (0) = p0,

or, equivalently,

q′ = −σ 2p2q − λθp, q (0) = q0,

p′ = λp − σ 2p3, p (0) = p0.
(26)

Provided that system (26) is solved, we can introduce

t̄ =
∫ t

0
σ 2p2 dt,

and notice that x̄(t̄) is governed by the standard OU process.
In general, one can solve the system (26) in two steps. First,

since the first equation is a linear inhomogeneous equation for
q, it can be trivially solved provided that p is known. Second,
the second equation is a Bernoulli equation for p, which can
be solved via the standard substitution

r = p−2, p = r−1/2.

The corresponding equation for r is a linear inhomogeneous
equation, which can be trivially solved. Indeed,

− r′

2r3/2
= λ

r1/2
− σ 2

r3/2
,

or,equivalently,

r′ = −2λr + 2σ 2.

Thus, r, p, q can all be found by quadratures. Finally, t̄ can be
found by quadrature as well since the corresponding integrand
is known

t̄ =
∫ t

0
σ 2p2 dt′ =

∫ t

0

σ 2

r
dt′.

In the following, we omit bar for brevity.
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Specifically,

r (t) = e−2(�(t)−M (t)),

p (t) = p0 e�(t)−M (t),

q (t) = e−M (t)

(
−p0

∫ t

0
λ (u) θ (u) e�(u)du + q0

)
,

t̄ (t) = M (t) .

(27)

Here

�(t) =
∫ t

0
λ (u) du,

M (t) = 1

2
ln

(
2p2

0

∫ t

0
σ 2 (u) e2�(u)du + 1

)
.

It is easy to see that for constant parameters, expressions (27)
produce correct results.

Remark 6 It is worth noting that considering θ(t) as a peri-
odic function, and other parameters as constants, one can
reduce an important problem in neuroscience to the standard
OU process. It will be reported elsewhere.

Transformation of the standard OU process to a Wiener
process (Forward). To calculate the density of the hitting time
distribution g(t, z), we need to solve the following forward
problem

pt (t, x; z) = p (t, x; z) + xpx (t, x; z) + 1
2 pxx (t, x; z) ,

p (0, x; z) = δ (x − z) ,

p (t, b(t); z) = 0.

(28)

This distribution is given by

g (t, z) = 1
2�px (t, b(t); z) . (29)

For simplicity, consider the case z > b(0).
We wish to transform an initial boundary value problem

(IBVP) (28) into the standard IBVP for a heat equation with a
moving boundary. To this end, we introduce new independent
and dependent variables as follows:

q(τ , ξ) = e−tp(t, x), τ = et sinh (t) , ξ = etx.

We get

qτ (τ , ξ) = 1

2
qξξ (τ , ξ) ,

q (0, ξ) = δ (ξ − z) ,

q (τ , β (τ)) = 0,

β (τ) = √
2τ + 1b̃(t),

where b̃(τ ) = b(t(τ )).
It is clear that 0 ≤ τ < ∞ and et = √

2τ + 1.
Then, using Theorem 1, the solution is given by (10)

and (11).

Assuming that the boundary is flat,

β (τ) − β
(
τ ′)

τ − τ ′ = b
(√

2τ + 1 − √
2τ ′ + 1

)
τ − τ ′

= 2b√
2τ + 1 + √

2τ ′ + 1
,

so that (11) can be written in the form

ν (τ) +
√

2

π
b
∫ τ

0

exp
(
−b2 (

√
2τ+1−√

2τ ′+1)
(
√

2τ+1+√
2τ ′+1)

)
ν
(
τ ′)(√

2τ + 1 + √
2τ ′ + 1

)√
τ − τ ′ dτ ′

+
exp

(
− (

√
2τ+1b−z)

2

2τ

)
√

2πτ
= 0. (30)

Hence,

g (t) = −
(
etb − z

)
exp

(
− (etb−z)

2

(e2t−1)
+ 2t

)
√

π
(
e2t − 1

)3

−
⎛
⎝etb + e2t√

π
(
e2t − 1

)
⎞
⎠ ν (t)

+ e2t

√
8π

∫ τ

0

(
1 − 2b2 (

√
2τ+1−√

2τ ′+1)
(
√

2τ+1+√
2τ ′+1)

)
exp(

−b2 (
√

2τ+1−√
2τ ′+1)

(
√

2τ+1+√
2τ ′+1)

)
ν
(
τ ′) − ν (τ)√

(τ − τ ′)3
dτ ′.

(31)

We can rewrite (30) in an alternative way. Let θ = √
2τ + 1 −

1, θ ′ = √
2τ ′ + 1 − 1, 0 ≤ θ ′ ≤ θ < ∞. Then

ν (θ) + 2b√
π

∫ θ

0

exp
(
−b2 (θ−θ ′)

(2+θ+θ ′)

) (
1 + θ ′) ν

(
θ ′)√

(2 + θ + θ ′)3 (θ − θ ′)
dθ ′

+
exp

(
− ((1+θ)b−z)2

((1+θ)2−1)

)
√

π
(
(1 + θ)2 − 1

) = 0. (32)

Symbolically,

ν (θ) +
∫ θ

0

�
f
b(θ , θ ′)ν

(
θ ′)

√
θ − θ ′ dθ ′ +

exp
(
− ((1+θ)b−z)2

((1+θ)2−1)

)
√

π
(
(1 + θ)2 − 1

) = 0,

where

�
f
b(θ , θ ′) = 2b√

π

exp
(
−b2 (θ−θ ′)

(2+θ+θ ′)

) (
1 + θ ′)√

(2 + θ + θ ′)3
.
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Accordingly, (31) can be written in the form

g (t) = −
(
etb − z

)
exp

(
− (etb−z)

2

(e2t−1)
+ 2t

)
√

π
(
e2t − 1

)3

−
⎛
⎝etb + e2t√

π
(
e2t − 1

)
⎞
⎠ ν (t)

+ 1√
π

e2t
∫ θ

0

((
1 − 2b2 (θ−θ ′)

(2+θ+θ ′)

)
exp(

−b2 (θ−θ ′)
(2+θ+θ ′)

)
ν
(
θ ′) − ν (θ)

) (
1 + θ ′)√

(2 + θ + θ ′)3 (θ − θ ′)3
dθ ′.

An example of the transformed boundary, for the case of the
flat boundary, is given in figure 1.

It is worth noting that the analytical solution is available in
two cases:

• b ≡ 0: one can be trivially found the solution using
the method of images;

• b(t) = A e−t + Bet: the boundary transforms to
2Bτ + A + B. The linear boundary was considered
in Section 4.1.

Transformation of the standard OU process to a Wiener
process (Backward). Alternatively, we can solve the backward
problem:

Gt (t, T , z) = −zGz (t, T , z) + 1

2
Gzz (t, T , z) ,

G (0, T , z) = 0,

G (t, T , b(T − t)) = 1,

(33)

By the same token as before, we introduce

τ = � (t) = 1 − e−2t

2
= e−t sinh (t) ,

Figure 1. Moving boundary b(τ ) for (4.4).

T̂ = e−T sinh (T) , 0 ≤ τ <
1

2
, x = e−tz,

and rewrite IBVP (33) as follows

Gτ (τ , x) = 1
2 Gxx (τ , x) ,

G (0, x) = 0,

G
(
τ , β

(
T̂ − τ

))
= 1,

β (τ) = √
1 − 2τb(T − t),

It is clear that 0 ≤ τ < 1/2, and e−t = √
1 − 2τ . It is

worth noting that for the backward problem the computa-
tional domain is compactified in the τ direction. This fact
greatly simplifies the numerical evaluation of G(0, T , z), when
T → ∞.

Using Theorem 2, the solution is given by (12) and (13).
For the case of flat boundary, b(t) ≡ b, we have ν(τ , T̂) ≡

ν(τ). Accordingly, using Theorem 2,

G (τ , x) =
∫ τ

0

(
x − b

√
1 − 2τ ′) exp(

− (x−b
√

1−2τ ′)
2

2(τ−τ ′)

)
ν
(
τ ′)

√
2π (τ − τ ′)3

dτ ′, (34)

Since

b (τ ) − b
(
τ ′)

τ − τ ′ = b
(√

1 − 2τ − √
1 − 2τ ′)

τ − τ ′

= − 2b√
1 − 2τ + √

1 − 2τ ′ .

so that (4.4) can be written in the form

ν (τ) −
√

2

π
b
∫ τ

0

×
exp

(
−b2 (

√
1−2τ ′−√

1−2τ)
(
√

1−2τ ′+√
1−2τ)

)
ν
(
τ ′)(√

1 − 2τ ′ + √
1 − 2τ

)√
τ − τ ′ dτ ′ − 1 = 0. (35)

Once (35) is solved, G(τ , x) and G(t, z) can be calculated by
virtue of (34) in a straightforward fashion.

We can rewrite (35) in an alternative way. Let ϑ = 1 −√
1 − 2τ , ϑ ′ = 1 − √

1 − 2τ ′, 0 ≤ ϑ ′ ≤ ϑ < 1. Then

ν (ϑ) − 2b√
π

∫ ϑ

0

×
exp

(
−b2 (ϑ−ϑ ′)

(2−ϑ−ϑ ′)

) (
1 − ϑ ′) ν

(
ϑ ′)√

(2 − ϑ − ϑ ′)3√ϑ − ϑ ′
dϑ ′ − 1 = 0. (36)

Symbolically,

ν (ϑ) −
∫ ϑ

0

�b
b(ϑ , ϑ ′)ν

(
ϑ ′)

√
ϑ − ϑ ′ dϑ ′ − 1 = 0,

where

�b
b(ϑ , ϑ ′) = 2b√

π

exp
(
−b2 (ϑ−ϑ ′)

(2−ϑ−ϑ ′)

) (
1 − ϑ ′)√

(2 − ϑ − ϑ ′)3
.



10 A. Lipton and V. Kaushansky

Figure 2. Moving boundary b(τ ) for (4.4).

As one would expect,

�b
b(θ , θ ′) = −i�f

ib

(−θ , −θ ′) .

As a result,

G (t, z) = 2
∫ ϑ

0

(
z (1 − ϑ) − b

(
1 − ϑ ′)) exp(

− (z(1−ϑ)−b(1−ϑ ′))
2

(ϑ−ϑ ′)(2−ϑ−ϑ ′)

) (
1 − ϑ ′) ν

(
ϑ ′)

√
π (ϑ − ϑ ′)3 (2 − ϑ − ϑ ′)3

dϑ ′,

where ϑ = 1 − e−t.
We show the moving boundary for different values of b in

figure 2.

5. Numerical solution

In this section, we show how to solve the Volterra equa-
tions (11) and (13) numerically, and also derive an analytical
approximation for small values of t.

5.1. Numerical method

In this section, we briefly discuss two methods to solve
the corresponding Volterra equations (11) and (13). We start
with a simple trapezoidal method, and then consider a more
advanced method based on a quadratic interpolation, which
gives a better convergence rate. Both methods can be found
in Linz (1985) (Section 8.2 and Section 8.4).

In this section we solve

f (t) = g(t) +
∫ t

0

K(t, s)√
t − s

f (s) ds, (37)

where K(t, s) is a non-singular part of the kernel.
Both (11) and (13) can be formulated as (37) with an

appropriate choice of K(t, s) and g(t).

5.1.1. Simple trapezoidal method. Consider the integral
in (37) separately∫ t

0

K(t, s)ν (s)√
t − s

ds = −2
∫ t

0
K(t, s)ν (s) d

√
t − s. (38)

We consider a grid 0 = t0 < t1 < · · · < tN = T , and denote
Fk for the approximated value of f (tk) and �k,l = tk − tl.
Then, by trapezoidal rule of the Stieltjes integral (38), (37)
can be approximated as

Fk = g(tk) +
k∑

i=1

(K(tk , ti)Fi + K(tk , ti−1)Fi−1)

×
(√

�k,i−1 − √
�k,i

)
= 0.

From the last equation, we can express Fk

Fk =
(

1 − K(tk , tk)
√

�k,k−1

)−1

×
(

g(tk) + K(tk , 0)
(√

�k,0 − √
�k,1

)

+
k−1∑
i=1

K(tk , ti)
(√

�k,i−1 − √
�k,i+1

)
Fi

)
.

Taking F0 = g(0), we can recursively compute Fm using the
previous values F0, . . . , Fm−1.

The approximation error of the integrals is of order O(�2),
where � = maxk,i

√
�k,i−1 − √

�k,i+1 is the step size. Hence,
on the uniform grid ti = i�, the convergence rate is of order
O(h).

5.1.2. Block-by-block method based on quadratic interpo-
lation. In order to balance the intuitive appeal of our method
with its numerical efficiency we decided to consider block-
by-block method based on quadratic interpolation, because
it already gives the 3.5 order convergence. However, fur-
ther improvements based on advanced collocation methods,
including Chebyshev and Bernstein polynomials, are possi-
ble and can be easily implemented if needed (Maleknejad et
al. 2007, Kolk and Pedas 2009, Maleknejad et al. 2011, Kolk
and Pedas 2013).

In this section we follow Linz (1985) (Section 8.4). Using
piece-wise quadratic interpolation, Linz (1985) derived

F2m+1 = g(t2m+1) + (1 − δm0)

2m∑
i=0

w2m+1,iK(t2m+1, ti)Fi

+ α

(
t2m+1, t2m,

h

2

)
K(t2m+1, t2m)F2m

+ β

(
t2m+1, t2m,

h

2

)
K(t2m+1, t2m+1/2)

×
(

3

8
F2m + 3

4
F2m+1 − 1

8
F2m+2

)

+ γ

(
t2m+1, t2m,

h

2

)
K(t2m+1, t2m+1)F2m+1, (39)
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and

F2m+2 = g(t2m+2) + (1 − δm0)

2m∑
i=0

w2m+2,iK(t2m+2, ti)Fi

+ α (t2m+2, t2m, h) K(t2m+2, t2m)F2m

+ β (t2m+2, t2m, h) K(t2m+2, t2m+1)F2m+1

+ γ (t2m+2, t2m, h) K(t2m+2, t2m+2)F2m+2, (40)

where

wn,i = (1 − δi,n−1)α(tn, ti, h)

+ (1 − δi,0)γ (tn, ti − 2h, h), i is even,

wn,i = β(tn, ti − h, h), i is odd,

and δij is a Kronecker delta.
The functions α, β, and γ are defined by

α(x, y, z) = z

2

∫ 2

0

(1 − s)(2 − s)√
x − y − sz

ds,

β(x, y, z) = z
∫ 2

0

s(2 − s)√
x − y − sz

ds,

γ (x, y, z) = z

2

∫ 2

0

s(s − 1)√
x − y − sz

ds.

We note that α, β, and γ depend only on x − y, z, and can
be written as a function of two variables. Moreover, these
integrals can be computed analytically.

Then, one can find [F2m+1, F2m+2] by solving the system of
two linear equations (39) and (40). We present the numerical
algorithm in Algorithm 1.

Algorithm 1 Block-by-block method based on quadratic
interpolation

Require: N — number of time steps: 0 = t0 < t1 < t2 <

. . . < tN = T
1: F0 = f (0)

2: for m = 0 : N/2 do
3: Compute w2m+1,i for i = 0, . . . , 2m
4: Compute w2m+2,i for i = 0, . . . , 2m
5: Get [F2m+1, F2m+2] by solving (39) and (40)
6: end for

Under some assumptions on regularity, the convergence
rate of this method is 3.5. In our case, for the backward
equation, these assumptions are not satisfied, and we empir-
ically confirm the convergence of order 1.5.

5.2. Approximation by an Abel integral equation

Consider the integral equations, which we got for the standard
OU process.

For small values of θ , (32) can be approximated by an Abel
integral equation of the second kind.

ν (θ) + b√
2π

∫ θ

0

1√
θ − θ ′ ν

(
θ ′) dθ ′ +

exp
(
− (b−z)2

2θ

)
√

2πθ
= 0.

(41)
The last equation is an Abel equation of the second kind and
can be solved analytically using direct and inverse Laplace
transforms (Abramowitz and Stegun 1965).

The Laplace transform yields

ν̄(�) + b
ν̄(�)√

2�
+ e−√

2�(z−b)

√
2�

= 0.

Then, ν̄(�) can be expressed as

ν̄(�) = −e−√
2�(z−b)

√
2� + b

Taking inverse Laplace transform, we get the final expression
for ν(θ)

ν(θ) = b eb2/2θ+b(z−b)N

(
−bθ + z − b√

θ

)
−

exp
(
− (b−z)2

2θ

)
√

2πθ
,

(42)
where N(x) is the CDF of the standard normal distribution.

Now consider the backward equation. For small values of
ϑ , (36) can be approximated by

ν(ϑ) − b√
2π

∫ ϑ

0

1√
ϑ − ϑ ′ ν(ϑ ′) dϑ ′ − 1 = 0. (43)

Similar to the forward equation, we solve it by taking direct
and inverse Laplace transforms. The direct Laplace transform
yields

ν̄(�) − b
ν̄(�)√

2�
− 1

�
= 0.

Hence,

ν̄(�) = 1√
�(

√
� − b/

√
2)

.

Taking the inverse Laplace transform, we get

ν(ϑ) = 2 eb2ϑ/2N(b
√

ϑ). (44)

Alternatively, one can find an analytical solution using the fol-
lowing results (Polyanin and Manzhirov 1998). The solution
of Abel equation

y(t) + ξ

∫ t

0

y(s) ds√
t − s

= f (t).

has the form

y(t) = F(t) + πξ 2
∫ t

0
exp[πξ 2(t − s)]F(s) ds,

where

F(t) = f (t) − ξ

∫ t

0

f (s) ds√
t − s

.
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6. Numerical examples

6.1. Numerical tests

Wiener process with linear boundary. Consider T = 1, z = 2,
and b(t) = 2t + 1. In figures 4 and 3 we compare the numer-
ical results with expressions (23) and (24). It is clear that
analytical and numerical results are in agreement.

Standard OU process with constant boundary. Consider
T = 2 and z = 2. In figure 5 we examine the density and
cumulative density functions for different values of b and
compare them with the analytical solution (28) for b = 0. In
figure 10 we show G(t, z) as a function of both t and z for
b = 1. In figure 6 we present ν(θ) for the forward problem
and in figure 7 we present ν(ϑ) for the backward problem for
various values of b.

To test how good the Abel equation approximates the cor-
responding Volterra equation, we plot them together for small
values of t. In figure 8 we compare the corresponding forward
equations and in figure 9 we compare the corresponding back-
ward equations. We can see that up to t = 0.02 the solutions
are visually indistinguishable.

We also empirically test the convergence rate of our numer-
ical method by implementing it for the forward and back-
ward Abel equations (41) and (43) and comparing them with
the analytical solutions (42) and (44). In figure 11a we get
the order of convergence 3.2 for the quadratic interpolation
method and order 1 for the trapezoidal method for the for-
ward equation. It confirms our estimate in Section 5.1. In
figure 11(b) we get the order 1.5 for the quadratic interpo-
lation method and the order 1 for the trapezoidal method
for the backward equation. The convergence order of the
quadratic interpolation method for the backward equation is
smaller than the theoretical estimate because the assumptions
on the regularity of the solution are not satisfied. Potentially,
a non-uniform grid improves the convergence order.

6.2. Comparison with other methods for the OU process

6.2.1. Description of other methods. We compare our
method with other available alternatives.

(1) Leblanc et al. (2000) method. We used (3) in Leblanc
et al. (2000) to compute the hitting density. In our

Figure 3. g(t) for the Wiener process and linear boundary (a) on the same plot (b) the difference between heat potentials and analytical
solution.

Figure 4. ν(t) for the Wiener process and linear boundary (a) on the same plot (b) the difference between heat potentials and analytical
solution.
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Figure 5. (a) Density function g(t) (b) Cumulative density function G(t).

Figure 6. ν(θ), the solution of (32) with z = 2 (a) as a function of θ
and b (b) as a function of θ for different values of b.

notation it is

g(t) =
(z − b) exp

(
z2−b2+t−(z−b)2 coth t

2

)
√

2π (sinh (t))3

=
(z − b) exp

(
b(z − b) − e−t(z−b)2

2 sinh(t) + t
2

)
√

2π (sinh (t))3
.

Integrating g(t), we get

G(t) = 2 eb(z−b)N

(
− (z − b) e−t/2

√
sinh t

)
.

(2) Alili et al. (2005), Linetsky (2004), and Ricciardi
and Sato (1988) method. The method is based on the

Figure 7. ν(ϑ), the solution of (36) (a) as a function of ϑ and b (b) as a function of ϑ for different values of b.
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Figure 8. Comparison between the approximation by the Abel equation and the numerical solution of the forward equation ν(t) in
t-coordinates (a) b = − 0.5, z = − 0.25 (b) b = 0.5, z = 1.

Figure 9. Comparison between the approximation by the Abel equation and the numerical solution of the backward equation ν(t) in
t-coordinates (a) b = − 0.5 (b) b = 0.5.

Figure 10. G(t, z) as a function of both t and z for b = 1.
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Figure 11. Empirical estimation of the numerical methods from Section 5.1: (a) forward equation, (b) backward equation.

inversion of the Laplace transform of the hitting den-
sity. In our notation, the Laplace transform u(�) has
the form

u(�) = e(z2−b2/2) D−�(z
√

2)

D−�(b
√

2)
, (45)

where Dν(x) is the parabolic cylinder function.
Alili et al. (2005) found a representation of the

inverse Laplace transform as a series of parabolic
cylinder function and its derivatives

g(t) = e(z2−b2)/2
∞∑

j=1

Dνj,b
√

2
(z

√
2)

D′
νj,b

√
2
(b

√
2)

exp
(
νj,b

√
2

)
,

where D′
ν(x) = (∂D/∂ν)(x) and νj,b the ordered

sequence of positive zeros of ν → Dν(x).
However, we used the Gaver–Stehfest algorithm

(Abate et al. 2000) for the inversion, as it gives more
stable and robust results. Moreover, the representation
from Alili et al. (2005) works only for t > t0 for some
t0, while the Gaver–Stehfest algorithm works for all
positive t.

Using this method, the density can be expressed as

g(t) ≈ ln 2

t

2m∑
k=1

ωku

(
k ln 2

t

)
,

where

ωk = (−1)m+k
min(k,m)∑

j=(k+1)/2�

jm+1

m
Cj

mCj
2jC

j
k−j.

As we can see, the method only requires the values of
u on the positive real semi-axis, and from (45) one can
observe that u(�) is non-singular on R+. As an exam-
ple, in figure 12, we plot u(�) for � > 0 with z = 2
and various values of b.

As an example of using the Gaver–Stehfest
algorithm in finance, one can refer to Lipton and

Figure 12. Laplace transform u(�) for z = 2.

Sepp (2011b), where the authors used it for the cali-
bration of a local volatility surface.

(3) Crank–Nicolson method. We solved (33) using Crank–
Nicolson numerical scheme (Duffy 2013). We should
note that other more accurate numerical methods are
available (embedded Runge–Kutta methods, Gear’s
methods, etc.). However, for our illustrative purposes,
we decided to compare our results with a simple
Crank–Nicolson scheme.

6.2.2. Comparison. We start with a comparison with
Leblanc et al. (2000) method to show that it gives wrong
results. In figure 13 we compare two methods for dif-
ferent parameters. We also give the analytical solution,
when it is available for b = 0. We can observe that only
for b = 0 the Leblanc et al. (2000) method gives correct
results, while for other parameters it totally differs from our
method. Moreover in figure 13(c) we can see that it gives
G(t) > 1.

A closed-form solution is only available when b = 0 and
is given by (28). We take other parameters as before T = 2
and z = 2. We compare our method (forward and backward),
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Figure 13. Comparison with Leblanc et al. (2000) method: (a) z = 2, b = −1, (b) z = 2, b = 0, (c) z = 2, b = − 1.

Figure 14. The difference between numerical and analytical solutions (a) Crank–Nicolson method (b) Laplace transform method.

the Crank–Nicolson method, and the method based on the
inversion of the Laplace transform in figures 15 and 14. We
note that our method has an advantage for this case because
Volterra equations (30) and (36) become trivial for b = 0.
Nevertheless, the comparison is still very useful.

We take N = 500 for both forward and backward methods,
h = k = 0.005 for the Crank–Nicolson method, and m = 24

for the Gaver–Stehfest algorithm. We used mpmath library
in Python (Johansson 2013) for the implementation of the
Gaver–Stehfest algorithm and parabolic cylinder functions
with arbitrary precision arithmetics. In our computations, we
used 100 digits precision.

From these graphs, we observe that the methods developed
in this paper and the method based on the inversion of the



On the first hitting time density 17

Figure 15. The difference between numerical and analytical solutions for b = 0 (a) Forward method (b) Backward method.

Figure 16. The difference between our method and the Laplace transform method (a) N = 100 (b) N = 10000.

Figure 17. (a) G(T , z) as a function of b with T = 500 and z = 2 (b) T(z, b) = E[s], where s is the hitting time.
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Laplace transform (Alili et al. 2005) significantly outperform
the Crank–Nicolson scheme.

In order to compare the solutions for non-trivial parameters,
we take the Laplace transform method with a maximum pos-
sible precision, and our method for N = 100 and N = 10000.
The first example shows how our results can be comparable
to the Laplace transform method for a relatively small value
of N when the computations can be done very fast; the second
example demonstrates that our method can obtain a very good
precision for a large N. The results are presented in figure 16.

6.3. Asymptotic behavior when t → ∞ for standard OU
process

It is clear that for b = 0, and hence all b ≥ 0, G(t, z) → 1,
when t → ∞. But it is unclear what happens for a negative b.
We empirically investigate it by plotting G(t, z) as a function
of b for a fixed large value of T and fixed z. In figure 17(a) we
take z = 2 and T = 500 and compute G(T , z) for b ∈ [−5, 2].
We can see that it still remains close to 1 up to b = − 2, and
then rapidly approaches zero. In further research, we want to
explore the asymptotic behavior of G(t) in more details. In
figure 17(b) we show the expected hitting time; this quantity is
very important for the design of mean-reverting trading strate-
gies since it allows a trader to decide when to go in and out of
the trade.

7. Financial applications

The hitting density of a Wiener and OU processes to a curvi-
linear boundary has many applications in applied mathemat-
ics, especially in mathematical finance. The classical problem
of pricing a barrier option in presence of term structure volatil-
ity. As it is shown in Lipton (2001) (pp. 484–486), the prob-
lem can be easily transformed to the problem with constant
coefficients, but with the curvilinear barrier, which belongs
to the class of problems we consider in this paper. In this
paper, we argue that this problem can easily be solved using
the method heat potentials instead of solving the problem
numerically using the finite-difference method.

Pricing methods for path-dependent options on yields were
proposed in Leblanc and Scaillet (1998), where the authors
reduced it to the hitting problem of an Ornstein–Uhlenbeck
process.

Another important problem is the design of mean-reverting
trading strategies and pairs trading, which was considered in
Avellaneda and Lee (2010) and De Prado (2018). Credit risk
modeling in a structural framework is another topic, which
heavily uses the first passage density of various stochastic pro-
cesses. We refer to Black and Cox (1976), Hyer et al. (1999),
Hull and White (2001), Avellaneda and Zhu (2001), Collin-
Dufresne and Goldstein (2001), Coculescu et al. (2008),
Yi (2010), Cheridito and Xu (2015), Lipton and Sepp (2011a),
Lipton and Savescu (2014) just to mention a few. The detailed
review can be found in Lipton and Sepp (2011a).

It has also applications in quantitative biology (Smith
1991), where the hitting time is used for modeling the time
between rings of a nerve cell, and numerous other fields.

7.1. Barrier option pricing

For simplicity, consider a single one-touch digital option. The
option pays 1 dollar immediately when the stock price hits the
barrier B.

Assume the stock price is driven by

dSt

St
= r(t) dt + σ(t) dWt,

S0 = z.

Hence, the value of this option can be given by

V =
∫ T

0
e− ∫ t

0 r(s) dsg(t, z) dt,

where g(t, z) is given in (25) with δ(t) = r(t).

7.2. Pairs trading

As we mentioned, the hitting density of an OU process might
be very useful for constructing mean-reverting trading strate-
gies. Consider two stocks P and Q. We can model them
together as

dPt

Pt
= α dt + β

dQt

Qt
+ dXt,

where Xt is called the cointegration residual.
Usually, the value of α is quite small. It means that one

can construct the portfolio by buying 1 dollar of P and selling
β dollars of Q. This portfolio will be driven by Xt, which in
many cases is observed to be an Ornstein–Uhlenbeck process.
As a result a trader might use the following strategy:

(1) go into the trade when X = Xin > θ , say;
(2) when the portfolio reaches a certain level X = Xout <

θ , go out of the trade.

By using the first hitting time density, the trader might fore-
cast the exit time from the trade given a level of profitability
or the level of profitability given the expected time of closing
her position by using, for example, figure 17(b). Optimization
of the corresponding strategy is clearly possible as well. The
power of our method is particularly clear when the residual is
driven by the OU process with time-dependent parameters.

7.3. Credit risk modeling

Consider a bank, whose assets A(t) are driven by geometric
Brownian motion and liabilities L(t) are deterministic. The
default is defined as

τ = inf{t ≥ 0 | A(t) ≤ L(t)}.

As a result, the problem of computation of default probability
can be reduced to the hitting problem of a Wiener process to a
boundary b(t), which can be easily computed by the methods
described in this paper.

Moreover, the method allows to solve efficiently the inverse
(calibration) problem, which is more difficult. Assume we are
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Figure 18. Default boundary b(t) computed using Algorithm 2 for
default probability π(t) = 1 − e−ht for different h; corresponding
values of z are denoted as starts.

given the default probability curve π(t). Then, we need to find
the default boundary b(t) to match π(t):

π(t) = π∗(t), (46)

where

π∗(t) =
∫ t

0
g(t′, z) dt′.

We approximate the default boundary by a piece-wise linear
function

b(ti) =
i∑

j=1

γj(tj − tj−1). (47)

The calibration can be done using a simple iterative algorithm,
which on each step finds γi to match the default boundary. The
details are given in Algorithm 2 and a numerical example in
figure 18. Detailed results will be given elsewhere.

Algorithm 2 Numerical method for the inverse problem

1: Determine b(t1) by matching the short-term default prob-
ability.

2: for i = 2 : n do
3: Compute (47) as a function of γi.
4: Find ν(t) as a solution of (11).
5: Solve (46) with respect to unknown γi.
6: Compute b(ti) using γi found before.
7: end for

8. Conclusion

We developed a semi-analytical approach to finding the first
hitting time density of a general diffusion process reducible
to a standard Wiener process. We transformed our problem
to an initial boundary value problem. By using the method of
heat potentials, we derived the corresponding expression for

the density via a weight function, which satisfies a Volterra
equation of the second kind. To solve the equation, we devel-
oped a numerical recursive scheme. We showed order of
convergence 3 for the forward scheme and order 1.5 for the
backward scheme, and confirmed these numerically.

We demonstrated several representative examples, such as
a Wiener process, a Geometric Brownian motion, and both
time-dependent and time-independent OU processes.

For the case of a standard OU process, we compared
our method to several other known methods in the litera-
ture. We showed that our method significantly outperforms
the Crank–Nicolson scheme and is at least as good as the
Laplace transform method while being markedly more stable.
In addition, our method is equally applicable to the case of a
time-dependent OU process, whilst the methods based on the
Laplace transform are able to deal only with the constant coef-
ficients. We leave comparison with other advanced numerical
methods for future research, but note that our method is much
easier to implement than these.

It is worth mentioning that the method of heat potentials
can be extended to two dimensional hitting problems which
are reducible to equivalent hitting problems for a standard two
dimensional Wiener process. Of course, the method results in
the Volterra–Fredholm integral equation, which requires care-
ful treatment, see Landis (1997), but is still easier to deal with
than conventional methods. The corresponding results will be
reported elsewhere. Studying multidimensional problems is
harder due to their very nature and is left to the future.

As we pointed out, the problem has many practical appli-
cations both in physics and finance, such as barrier options
pricing, construction of mean-reverting trading strategies, and
credit risk modeling. Other applications will be discussed
elsewhere.
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Proof of Theorem 1

To be concrete, let us assume that z > b(0). Then

g (t) = 1

2
px (t, b(t)) = 1

2
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x→b(t)
px(t, x) =

= −
(z − b (t)) exp

(
− (z−b(t))2

2t

)
2
√

2π t3
+ 1
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ε→0

∂
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We compute the corresponding limit by splitting it into four parts:

lim
ε→0

∫ t

0

(
1 −

(
ε + 	

(
t, t′

))2

(t − t′)

) exp

(
− (ε+	(t,t′))2

2(t−t′)

)
√

2π (t − t′)3
ν
(
t′
)

dt′

= lim
ε→0

∫ t

0

(
1 − ε2

t − t′
− 2

ε	
(
t, t′

)
t − t′

− 	
(
t, t′

)2

t − t′

)

×
exp

(
− ε2

2(t−t′) + ε	(t,t′)
t−t′

)

(t, t′)√

2π (t − t′)3
ν
(
t′
)

dt′

= L1 + L2 − 2L3 − L4,

where

L1 = ν(t) lim
ε→0

∫ t

0

(
1 − ε2

t − t′

)
exp

(
− ε2

2(t−t′) + ε	(t,t′)
t−t′

)
√

2π (t − t′)3
dt′,

L2 = lim
ε→0

∫ t

0

(
1 − ε2

t − t′

)

×
exp

(
− ε2

2(t−t′) + ε	(t,t′)
t−t′

) (

(t, t′)ν(t′) − ν(t)

)
√

2π (t − t′)3
dt′,

L3 = lim
ε→0

∫ t

0

ε	
(
t, t′

)
t − t′

exp
(
− ε2

2(t−t′) + ε	(t,t′)
t−t′

)

(t, t′)√

2π (t − t′)3
ν
(
t′
)

dt′

L4 = lim
ε→0

∫ t

0

	
(
t, t′

)2

t − t′
exp

(
− ε2

2(t−t′) + ε	(t,t′)
t−t′

)

(t, t′)√

2π (t − t′)3
ν
(
t′
)

dt′,

and

	
(
t, t′

) = b (t) − b
(
t′
)

,


(t, t′) = exp

(
−
(
b (t) − b

(
t′
))2

2 (t − t′)
.

)

We have

L1 = ν(t) lim
ε→0

∫ t

0

(
1 − ε2

(t − t′)

)
exp

(
− ε2

2(t−t′) + ε(b(t)−b(t′))
t−t′

)
√

2π (t − t′)3
dt′

= ν (t) lim
ε→0

1

ε

∫ t/ε2

0

(
1 − 1

u

) exp
(
− 1

2u

)
√

2πu3
du

= 2ν (t) lim
ε→0

1

ε

∫ ∞

ε/
√

t

(
1 − v2

) exp
(
− v2

2

)
√

2π
dv

= −2ν (t) lim
ε→0

1

ε

∫ ε/
√

t

0

(
1 − v2

) exp
(
− v2

2

)
√

2π
dv

= − 2√
2π t

ν (t) ,

where t − t′ = ε2u, u = 1/v2 and we have used the fact that

∫ ∞

0

(
1 − v2

) exp
(
− v2

2

)
√

2π
dv = 0.

Further,
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where we have dropped the higher order ε2 term in the integral in the
second line. L3 is computed as in Tikhonov and Samarskii (1963, pp.
530–535)
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Combining all terms, we finally have
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