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ABSTRACT: In this article, we use recently 
developed extension of the classical heat potential 
method in order to solve three important but seem-
ingly unrelated problems of financial engineering: 
(A) American put pricing; (B) default boundary 
determination for the structural default problem; 
and (C) evaluation of the hitting time prob-
ability distribution for the general time-dependent 
Ornstein–Uhlenbeck process. We show that all 
three problems boil down to analyzing behavior 
of a standard Wiener process in a semi-infinite 
domain with a quasi-square-root boundary.

TOPICS: Derivatives, options, credit default 
swaps*

The method of heat potentials is 
a highly powerful approach in 
mathematical physics (Tikhonov 
and Samarskii 1963, Rubinstein 

1971, Landis 1997, Kartashov 2001, Watson 
2012). It has been used for decades in several 
important fields including heat transfer, the 

Stefan problem, nuclear engineering, and 
material science. However, it is not so widely 
used in mathematical finance. The first use 
of the method of heat potentials in mathe-
matical finance is described in Lipton (2001), 
who applied it for pricing barrier options 
with curvilinear barrier (Section 12.2.3, pp. 
462–467). In this article, we consider three 
classical problems of mathematical finance, 
and show how natural is the application of 
the method of heat potentials to them.

First, we consider the problem of 
pricing an American put option; then we 
consider the problem of computation of 
the default boundary in a structural default 
model. Finally, we consider the first hitting 
time of an Ornstein–Uhlenbeck process. 
We show that all three problems boil down 
to analyzing behavior of a standard Wiener 
process in a semi-inf inite domain with a 
quasi-square-root boundary, which can be 
done elegantly by using the method of heat 
potentials.

• We introduce a powerful extension of the classical method of heat potentials designed for 
solving initial boundary value problems for the heat equation with moving boundaries.

• We demonstrate the versatility of our method by solving several classical problems of 
financial engineering in a unified fashion.

• In particular, we find the boundary corresponding to the constant default intensity in 
the structural default model, thus solving in the affirmative a long outstanding problem.

KEY FINDINGS
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The American Put Option

American options are one of the most traded 
options for several asset classes. It is a well-known fact 
that for an American call option without dividends, it 
is never optimal to exercise it early. Therefore, we con-
centrate our analysis on American put options, assuming 
that the risk-free rate is positive. We note in passing that 
in several major economies this rate is actually negative, 
which requires rebuilding the very foundation of 
mathematical finance—a task which is not pursued here.

In the Black–Scholes framework, no closed-form 
solution exists for the price of an American put, hence 
numerical or semi-analytical methods should be used. 
There are many well-known methods for pricing 
American options. One of the simplest approaches is 
to use binomial trees (Cox et al. 1979 and Leisen and 
Reimer 1996). This is very similar to the binomial model 
for European options but for each node expected payoff 
of the option is compared to the payoff one gets if the 
option is exercised immediately.

Finite-difference methods (Brennan and Schwartz 
1978, Forsyth and Vetzal 2002, Reisinger and Witte 
2012, Duffy 2013), where on each time step of the 
scheme an exercise decision is made, are well suited for 
the continuous time case.

Alternatively, the pricing problem can be formulated 
as a free boundary problem. The main task is to determine 
the exact location of the early exercise boundary. Many 
authors reduce the free boundary problem to an integral 
equation and solve it numerically (Kim 1990, Kuske and 
Keller 1998, Hou et al. 2000, Aitsahlia and Lai 2001, Kim 
et al. 2013, Andersen et al. 2016).

There are numerous analytical/semi-analytical 
approximations of the exact solution. The main advan-
tage of these approximations is that they are very fast to 
compute, however they might be inaccurate. As examples 
of analytical/semi-analytical approximations, we mention 
Barone-Adesi and Whaley (1987), Ju (1998), Ju and Zhong 
(1999), Carr (1998), Ostrov and Goodman (2002), Zhu 
(2006), Zhu and He (2007), and many others.

Finally, the least-square Monte Carlo method 
(Longstaff and Schwartz 2001, Tsitsiklis and Van Roy 
2001, Andersen and Broadie 2004), uses regression to 
estimate the values of the option from simulated paths 
and thus determine exercise rule and price of the option. 
This method is the most f lexible and allows to price 
multidimensional options. However, it is very noisy in 
comparison to other methods.

In this article, we are interested in the free 
boundary problem approach. Using the method of heat 
potentials, we show how to reduce this problem to a 
system of Volterra integral equations of the second kind, 
which are easily solved numerically.

The Structural Default Problem

There are two main approaches to credit risk mod-
eling: reduced-form models and structural models. The 
idea of the reduced-form approach is not to go deep in 
economics reasons of the default event, but to assume 
that the default comes randomly and model the likeli-
hood of the default. Some examples of these models 
are Artzner and Delbaen (1995), Jarrow and Turn-
bull (1995), Duffie and Singleton (1997), Duffie and 
Singleton (1999), and Lando (1998), among others. The 
full review of this approach can be found in Bielecki 
and Rutkowski (2013) and Lipton and Rennie (2013). 
The advantage of this approach is that it allows an easy 
calibration to the market.

In this article, we are interested in the structural 
approach. In contrast to the reduced-form framework, 
the structural framework has an economic interpre-
tation of the default. In a seminal work of Merton 
(1974), the default event is defined as the event when 
the assets fall below the liabilities at maturity. Many 
authors propose various extensions of this basic model, 
Black and Cox (1976), Kim et al. (1993), Nielsen et al. 
(1993), Leland (1994), Longstaff and Schwartz (1995), 
Leland and Toft (1996), Albanese and Chen (2005); 
a detailed exposition is given in Lipton and Rennie 
(2013). They consider more complicated forms of the 
debt and assume that the default event can be monitored 
continuously. The disadvantage of these models is that 
they are not able to generate sufficiently high short-term 
CDS spreads typically observed in the market. The 
next generation of models do this in different ways, for 
instance, by incorporating jumps in the asset’s dynamics 
(Zhou 2001, Hilberink and Rogers 2002, Lipton 2002, 
Lipton et al. 2007, Sepp 2004, Sepp 2006, Cariboni and 
Schoutens 2007, Feng and Linetsky 2008, Lipton and 
Sepp 2009), or making initial asset uncertain (Finger 
et al. 2002).

Another approach is considered by Hyer et al. (1999), 
Hull and White (2001), Avellaneda and Zhu (2001), 
who propose to make the default barrier curvilinear. 
Motivated by the latter approach, we develop a new 
method for calibration of the default boundary to default 
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probabilities observed in the market. We emphasize that 
for more than two decades it was not known whether 
a curvilinear boundary capable of producing nontrivial 
probability of default for very short times actually exists. 
In this article, we answer this question affirmatively by 
showing how to construct it for the all-important case 
of constant default intensity.

First Time Hitting of an 

Ornstein–Uhlenbeck Process

Computation of the first hitting time density for 
an OU process is a long-standing problem in math-
ematical f inance, and mathematical physics more 
generally. Attempts to solve it analytically have been 
made for many years, but were unsuccessful, see e.g., 
Leblanc and Scaillet (1998) and Leblanc et al. (2000). 
There are several papers that derive the density using 
the Laplace transform for the case with constant coef-
ficients and f lat boundary. The direct Laplace trans-
form can be computed analytically, while for the inverse 
transform the analytical representation is not avail-
able. Ricciardi and Sato (1988) compute the inverse 
transform numerically, while Alili et al. (2005) and 
Linetsky (2004) f ind a semi-analytical representation 
as an infinite series of special functions, which is not 
very efficient for practical computations. For financial 
applications, short- and long-term asymptotics play 
a very important role. Martin et al. (2019) develop a 
short- and long-time asymptotic expansion for the OU 
and other mean-reverting processes.

Recently, Lipton and Kaushansky (2018, 2019) 
used the method of heat potentials and reduced the 
problem to a Volterra integral equation of the second 
kind, which can be easily solved numerically. Once the 
equation is solved, the hitting density can be found by 
simple trapezoidal integration. The distinct and impor-
tant advantage of the method, in comparison to other 
methods, is that it still works for the case of time-depen-
dent coefficients and time-dependent barrier.

In this article, we overview the method of Lipton 
and Kaushansky (2018, 2019) and present several illustra-
tive numerical results.

Article Structure

The rest of the article is organized as follows: in the 
next section, we overview the method of heat potentials 

for solving initial boundary value problems; then we 
show how to compute the exercise boundary for an 
American put. After that, we show how to construct the 
default boundary for a structural default model and then 
we show how to compute the first hitting time density 
of an OU process; in the final section, we conclude.

THE METHOD OF HEAT POTENTIALS

Con sider the following initial boundary value 
problem

b t

u x b

u b t f t t
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2

, 0tt , (x b≥ )

(0, )x 0, (0),

( ,t ( )t ) f= f ), 0.

Using the method of heat potentials (see Tikhonov 
and Samarskii 1963 or Lipton 2001), the solution can 
be written as
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where ν(t) is a weight function, which solves the fol-
lowing Volterra integral equation of the second kind 1
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Lipton and Kaushansky (2019) derived a similar 
expression for ux(t, b(t)) 2
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1 Note that we cannot just plug x = b(t) to (1) due to sin-
gularity of the integral. Derivations of the limit are given in 
Appendix A.

2 For completeness we provide derivations in Appendix A.
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We use this result in the following sections.

THE AMERICAN PUT OPTION

Consid er a stock with price St governed by a geo-
metric Brownian motion

= σ ,
dS
S

rdt d+ σ Wt

t
tWW

with risk-free rate r, which is assumed to be positive, 
r > 0, and volatility σ.

We wish to price an American put option with 
strike K, paying (K − Sτ)+ if exercised at time τ ∈ [0, T ]. 
If not previously exercised, the put value is

E=
τ∈

τ +( ) sup [EE ( )− τ ].
[ , ]

( )p t( e− (( )τ

T,
t
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It is known that the decision to exercise the put 
option is characterized by a deterministic exercise 
boundary ∗ ( )S∗ (T  (Lipton 2001)
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Using the Feynman–Kac formula, we can write a 
PDE for the American put option (Kim 1990)

− =

∗ ∗

∗

1
2

0,

( , )) (= ∗ ),

( ( )) 1= − ,

( , ) 0= ,

2 2V S+ σ2 V r+ SV rV

V ( S∗ ( − t

V ( S∗ (

V ( S

t Sσ
2

V SV + σ VV S Sr+ SVV

T T( ))(

S T( ,VV ( S

Consider a change of variables

 

x
S
K

T t

P
V
K

b k

= ⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞ −T

= = σr

ln , (τ = σ ),

, (bbb 0) 0, / .σ

2

2  (2)

Since ∗ ( )S∗ (T  depends on the maturity T, it is more 
convenient to consider ∗( )τ ( )b S=( )τ T .

Then, equation for the American put becomes
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Thus, Q satisf ies a standard heat equation in a 
domain with a moving boundary, which is determined 
in such a way that two boundary conditions become 
compatible.

Solution Using the Method of Heat Potentials

Using Theorem 1 from Lipton and Kaushansky 
(2019), we obtain the integral formulation of the problem

 d∫ν + Ψ τ ′τ Ξ′ τ ′ ν ′
τ − ′τ

′τ =dd ′ φ τ
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According to Ostrov and Goodman (2002), we can 
represent the boundary for small τ as follows:

 τ π τ( )τ (8 ) .2b k= − τ π( )τ ln(8  (5)

We use this expression to start our equations and 
then switch to finding the boundary. We can think of 
b(τ) as a typical square-root-like boundary.

Numerical Method

We use a piece-wise linear approximation of the 
exercise boundary on a time grid τ0 < τ1 < … < τn = T. 
We need to determine bi = b(τi) and νi = ν(τi) for 0 ≤ i ≤ n. 
We choose small time τ0. Then, the exercise boundary 
up to t = τ0 can be determined by (5). Using (3) and 
(4), we are able to determine ν(t) for t ∈ [0, τ0]. We can 
rewrite

∑+ γ τ
=

( )τ − τ − .
1

1b b=i j∑+ γ0b
j

i

j jτ

Hence, we aim to determine γi for 1 ≤ i ≤ n.
It is worth noting that b(t) has a discontinuous 

derivative at t = ti and (4) is not well-defined. There-
fore, we define

+ γ τ
− −

( )τ − τ − ,1
2 2

1b b=1
i i i+ γ−1 i i

where τ =−
τ +τ

i
i i+τ−

21
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, and evaluate (3) and (4) at = τ −t i 1
2
.

Assume we have found the γ1, …, γi−1 Then, we 
can write

 + γ ( )τ − τ ,1 1+ γ (τ τ −b b=( )γi iγ(γ(γ i i−1 + γγ i iτ  (6) 

and

 γ + γ
− − −

(γ ( )τ − τ − ,1
2

1
2

1b b=( )γ1
i i ib i i i  (7) 

Using the last equation, we are able to find ν −i 1
2
 as 

a function of γi by solving (3) numerically. Numerical 
methods for solving (3) can be found in Lipton and 
Kaushansky (2019).

Using γ−bi i( )γ i1
2

 and ν γi i( )γ i2
, we solve (4) with 

respect to γi. It can be easily computed numerically by 
evaluating the integral with a square-root singularity 
and noticing that ′ = γb i i( )τ −i 2

. To compute the inte-
gral, we split it in two parts: [0, τ0] and τ −i[ ,τ ]0 1

2
. The 

former integral is evaluated with a higher-order integra-
tion methods, and the latter integral is evaluated using 
a trapezoidal rule.

Therefore, we apply the following method to find 
the early exercise boundary b(τ):

Numerical Results

Consid er the following parameters in Exhibit 1. 
After change of variable  s (2), k = 0.22 and σ = 0.452T T= σ2 . 
We also choose τ0 = 0.01.

In Exhibits 2 and 3, we compute the exercise 
boundary using our method and compare our results 
with the boundary computed using a finite-difference 
method. As we can see, in both figures, the curves are 
visually indistinguishable.

Require: Choose τ0 manually.

Algorithm 1 Numerical Method for the American Put Option

1: Define a grid 0 = t0 < t1 < … < tm = τ0. Compute b(ti) using (5).

3: Define a grid τ0 < τ1 < … < τn.

2: Find ν(t0), ν(t1),…, ν(tm) by solving (3).

4: for i = 1: n do
5:    Compute (7) as a function of γiγγ .

8:    Compute bi using (6).
9: end for

6:    Find νi–ii as a function of γiγγ  by solving (3).

7:    Find γi by solving (4) at τi–ii 1
2

1
2

with respect to γiγγ .
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In Exhibit 4 we show the   density function ν(τ) 
computed using our method. As expected, it is mono-
tone and positive.

Finally, we show the cur v e computed using our 
method and the exercise boundary approximation for 
small τ (Ostrov and Goodman 2002); see Exhibit 5. 
We observe that for small τ the approximation works 
well, while for larger τ it becomes inaccurate, as one 
would expect.

THE STRUCTURAL DEFAULT PROB LEM

Following Hyer et al. (1999 ), Hull and White 
(2001), and Avellaneda and Zhu (2001), we assume that 
the normalized asset value is driven by Xt = Wt and the 
default occurs at time s when Xt hits the boundary b(t)

>inf{ 0 : ( )}.s t= inf{ X b≤t

We are going to find b(t) assuming we know the 
default probability π(t). For brevity, we assume that Xt 
has unit volatility by rescaling t as necessary.

Initially, we assume that for the initial short time 
period [0, τ] the firm is not going to default, and the first 
possibility to default occurs at time τ. Eventually, we 

E X H I B I T  1
Parameters for an American Option

T

5

r
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σ
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K

100

E X H I B I T  2
Early Exercise Boundary b(τ) Computed Using the 
Method of Heat Potentials and Finite Difference 
Method in Transformed Coordinates
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E X H I B I T  3
Early Exercise Boundary ∗∗∗∗S∗∗∗∗

T ( )t Computed in the 
Original Coordinates 

E X H I B I T  4
Density Function ν(τ)

Note: The visible kink in the graph is due to our choice of τ0.
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shall let τ → 0. From a practical standpoint, a choice of a 
small enough τ is sufficient, but it is rather interesting to 
see what happens from a theoretical standpoint. Hence, 
we redefine the default time as

= ≥ τinf{ (: )}.s t= inf{ b≤ tt

We denote the default probability P(t, T, z) = P(t ≤ 
s ≤ T|Xt = z), and p(t, x; z) is the transition probability 
density from the state (0, z) to the state (t, x). We also 
denote π(t) = P(0, t).

It is clear that at time t = τ − 0, the transition prob-
ability is

=
πτ

−
τ(τ )

1
2

.2

2

p x( ,τ e
x

At time t = τ, the first possibility of default occurs. 
Assuming we know the default boundary value bτ = b(τ), 
the transition probability becomes

= πτ
≥

⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩

−
τ

τ

τ

(τ )
1
2

,

0, .

2

2

p x( ,τ e xτ ,2 b

x b<

x

Hence, transition probability satisfies the following 
Fokker–Planck equation

 ( , )
1
2

( , ),p ( x p=) x,t x,
2

t( x p)
2 x  (8)

= πτ
≥

⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩

−
τ

τ

τ

(τ )
1
2

,

0, ,

2

2

p x( ,τ e xτ ,2 b

x b<

x

 ( , ( )) 0= .p t( b t(   (9)

Then, the default probability density g(t) can be 
written as

g t p t b tx( )t
1

2
( ,t ( )),=

so that the default probability ∫π( ) ( )
0∫∫t g∫=)
0∫ u d) u
t

.
Alternatively,

∫π
∞

( ) 1 (∫ , ) .
( )

t p∫=) 1 ∫−
)

t, dx
b∫∫ (∫∫ (

Solution Using the Method of Heat Potentials

We split (8)–(9) as p(t, x) = H(t, x) + q(t, x):

 

q q=

q x

q t b t t b t

t xq x

1
2

,

(ττ ) 0=
( ,t ( )t ) (= −H , (b )). (10)

and

H H

H x
e x b

x b

t xH x

x

=x πτ
≥

⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩

−
τ

τ

τ

1
2

,

( ,τ )
1
2

,

0, .

2

2

Solving the last equation, as a convolution of heat 
kernel with the initial condition, we get

∫=
π − τ πτ−∞∫∫

+∞ −
−τ −

τ
τ

( , )
1

2
1
2

1 .
( )
2( ) 2

{ }τ

2 2

H( x
t

e e( ) dy
y−

t
y

≥≥

E X H I B I T  5
The Early Exercise Boundary Computed Using the 
Method of Heat Potentials and Using the Analytical 
Approximation of Ostrov and Goodman (2002) 

====T 0.45

τ

τ

Au
th

or
 D

ra
ft 

fo
r R

ev
ie

w
 o

nl
y



8   Physics and Derivatives: ON THREE IMPORTANT PROBLEMS IN MATHEMATICAL FINANCE Special Issue 2020

Consider

∫ ∫

= π − ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ −

∫
+∞

− τ

τ τ
∫ e dy

ue N
b x−τ

u

y y

b∫∫
x x y

b∫∫∫∫
x x

2 1π
⎛
⎝⎜
⎛⎛
⎝⎝

ue u t ,

( )x y− ( )x y−
2

2 2u

2 2 2 2 2

2 2

(2 2

where =τu x= xt
u
t,( )−τt , and N(x) is the standard normal 

CDF.
As a result,

=
π

⎛
⎝⎝⎝
⎛⎛ ⎞

⎠
⎞⎞
⎠⎠

⎛
⎝⎝⎝

⎞
⎠⎠⎠

−
( , )

1
2

.⎛
⎝
⎛⎛1 ⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎞
⎠⎟
⎞⎞
⎠⎠

τ2

2

H( x
t

e N
⎛
⎝⎜
⎛⎛
⎝⎝
1−2

b x−ττ

u

x

The IBVP (10) can be solved using the method 
of heat potentials (Lipton 2001, Section 12.2.3, pp. 
462–467):

∫=
′ − ′

′
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− ′
νν ′ ′

τ∫∫( , )

( ( ))expx
( ( ))

2( )

2 (π )
( ) ,

2

3
q t( x

b− t
b− t

t t−
t t−

t d′)′ t
t

where ν(t) solves the following Volterra integral equation 
of the second kind

 

∫ν +
′ − ′

′
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− ′
νν ′ ′

+

τ∫∫
b t b t

b t b t
t t−

t t−
t d′ t

H b t

t
( )

( (b ) (− b ))expx
( (b ) (− b ))

2( )

2 (π )
( )t ′

( ,t ( )t ) 0= .

2

3

 (11)

Expressing p(t, x) via H(t, x) and q(t, x), and com-
puting π(t) as

∫π
+∞

( ) 1 (∫ , ) ,
( )

t p∫=) 1 ∫−
)

t, dx
b∫∫ (∫∫ (

we get

 ∫π = −
− ′

′
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠
ν ′

− ′
′

τ∫∫( ) 1 ( )

expx
( ( ) (− ))

2( )
( )′

2 (π )
,

2

=) 1− t

b t( b t(
t t−
t t−

dt
t

 (12)

where

∫=
+∞

( ) ( , ) .
( )

H( H( x d)
b t∫∫ (

To compute ( )H( , we use the following result 
(formula 10,010.1 from Owen 1980):

∫ =
+

−
+

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠−∞∫∫ N b n dx BvN

a

b
Y

b

b

Y
( )+a bx ( )x

1
, ;Y

1
.

2 2+ b
, ;

1

Transforming ( )H( , we have

∫= − ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ −

π
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

= − ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ −

⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
+

⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−∞
τ

τ

τ

H N
b t

t t⎠⎠⎠ π
e N

b x−τ

u
dx

N
b t

t
N b

⎛
⎝⎜
⎛⎛
⎝⎝

t
u

BvN b
⎛
⎝⎜
⎛⎛
⎝⎝

t
u

b t
t

u
u t+

x

b t∫∫( )t 1
( )t 1

2

1
( )t

( )+u t

( )+u t
,

( )t
; ,

⎠⎟⎠⎠

2

( )t

2

so that Eq. (12) becomes

∫

π = ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ +

⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−
+

⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−
− ′

′
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠
ν ′

− ′
′

τ

τ

τ∫∫

( )
( )

( )+

( )+
,

( )
;

expx
( ( ) (− ))

2( )
( )′

2 (π )
.

2

N=)
b t(

t
N b

⎛
⎝⎜
⎛⎛
⎝⎝

t
u(

BvN b
⎛
⎝⎜
⎛⎛
⎝⎝

t
u(

b t(
t

u
u t+

b t( b t(
t t−
t t−

dt
t

where BvN(x, y, ρ) is the CDF of bivariate normal 
distribution with correlation ρ.

The Choice of b(τ)

Consider the default probability of the form

π = η( ) 1 .−ηe=) 1− t

The barrier has to start at τ, τ → 0, and there should 
be no barrier before that. We wish to find b(τ). We have

∫( )π( = −
−

τ
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

πτ
= − −

τ
⎛
⎝
⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =

( )

∞ ητ1
expx

2
2

1
( )τ

1 .− −ητ

2x

dx N
b

b∫∫

Thus,

−
τ

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ = −ητ( )τ

,N
b

e
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and

τ − ητ( )τ ( )−ητ .1b N= − τ( )τ

Now, using Blair et al. (1976)

ζ
→

( ) ~ 2 ( )ζ ,1

1
N y− (1 f

y

where

ζ = − π −

ζ = ζ − ζ + ζ −
ζ

+ ζ − ζ +
ζ

l (2 (1 )),

(ζ ln
2

ln 2
4

(lnζ 6 ln 1ζ + 4
16

,
2

2

y

f

so that

 

−

≈ − τ πητ

−ητˆ ˆ ( l− n(2 (π 1 )))

2ˆ l (2 ˆ) .

ˆb fτ τ( ˆ) 2= − ˆ e

(13)

Once again, we can think of b(τ) as a typical 
square-root-like boundary.

Numerical Method

We assume that the default boundary b(t) is piece-
wise linear:

 =
=

( ) ( )− − ,
1

1b t( b t∑+ γ∑( )τ (i j∑γ∑) ( )τ + γ∑)τ
j

i

j j  (14)

and on each step i  we determine the corresponding γi to 
match the default probability π(ti).

The numerical method is the following:

The Volterra integral equation (11) could be solved 
by using a quadrature approximation, an example of such 

a method can be found in Lipton and Kaushansky (2019), 
after that, the integrals in (12) can be easily computed.

Numerical Results

Consider T = 10 and a non-uniform grid ti = (iΔ)2 
for i = 0, … N. This choice is motivated by having more 
points on the short end and sparser grid on the long end. 
We choose N = 500. To solve the Volterra equation (11), 
we consider different grids with a smaller step size.

We apply the methods described in the previous 
section and analyze the results. As before, we assume 
that market default probability is given by a parametric 
family

π = − η >η( ) 1 ,− −η 0.=) 1− t

In Exhibit 6, we show the default boundaries com-
puted by using our method for different values of η.

We also plot the solution of the Volterra equation 
(11) in Exhibit 7.

To verify correctness of out method, we take the 
default boundary computed before and compute the 
default probability using the Monte Carlo method. 
In Exhibit 8, we compare the results and see that the 
curves are visually indistinguishable.

E X H I B I T  6
Default Boundary b(t) Computed Using Numerical 
Method for Different η

2

1

0

–2
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0 1 2 3 4 5 6 7 8 10

b(
t)t

t
9

η = 0.005
η = 0.01
η = 0.05
η = 0.1
η = 0.2

1: Determine bτ using (13).

Algorithm 2 Numerical Method

2: for i = 1 : n do
3: Compute (14) as a function of γiγγ .
4: Find ν(t) as a solution of (11).
5: Solve (12) with respect to unknown γiγγ .
6: Compute b(ti).
7: end for
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FIRST HITTING TIME DENSITY FOR AN 

ORNSTEIN–UH L ENBECK PROCESS

Consider an Ornstein–Uhlenbeck process with 
ti me-dependent coefficients

 
= λ θ − + σdX X dt + σ dW

X z=
t tλ tWW( )tt (θθθθ )− XtX ( )t ,

.0
 (15)

We wish to calculate t he density of stopping time 
s = inf{t : Xt = b(t)} for some time-dependent barrier b(t). 
Transformation to a standard OU process Lipton  
and Kaushansky (2019) showed how to transform the 
process to a standard OU process

.= −dX X dt d+ WWt tX tWW

We state their result in the following lemma
Lemma 1 Consider

+( ) ( ),X p= X) q t(t t( )p X)

where

∫

( )∫
=

=

=

Λ = λ

Λ −

− ( ∫
p t e

q t e ( ∫(
t M

∫= λ du

M−

M

t

( )t ,

( )t ,

( )t ( )t ,

( )t ( )u ,

( )t ( )t

( )t ∫∫

0∫∫

( )∫= (M( )t
1
2

l ∫∫ ,∫∫∫

and Xt satisfies (15). Then, X t  is a standard OU process.
As a simple corollary, for the process with constant 

coefficients λ(t) ≡ λ, θ(t) ≡ θ, and σ(t) ≡ σ, we have

λ
σ

θ

= λ

( )− θ ,

.

X = (

t t= λ

t t((

Hence, in the following, we consider the hitting 
problem for a standard Ornstein–Uhlenbeck process. 
Transformation of a standard OU process to a 
Wiene r process (Forward) Consider z > b(0). To cal-
culate the density of the hitting time distribution g(t, z), 
we need to solve the following forward problem

p x xp x

p t x

p x z x z

p t b t

t xt x p t x xp

xx

+x= p xp

+

δ −
=

( ,tt ; )zz (ttt )zzz ( ,t ; )z

1
2

( ,t ; )z ,

(0 ;x ) (= δ ),

( ,t ( )t ; )z 0.

This distribution is given by

( , )
1
2

( , ( ); ).g t( z p=)
2

t b, );x

E X H I B I T  7
Density Functions ν(t)
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Default Probabilities Computed Using the 
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Introducing new variables

τ ξ τ = ξ(τ ) = − , ), τ = ,q eτ ξ(τ ) = p( ττ = eξ = xt τ( )t( t

We get

  

τ ξ = ξ

ξ δ ξ
τ β

β τ = τ

τ ξξ(τ )
1
2

( ,τ ),

(0 ξ )ξ ,

(τ ( )τ ) 0= ,

)τ 2 1τ + ( ),

q qτ ξ =τ(τ )
2

q zξ = δ ξ(0,ξ ξ −
q

b t(  (16)

where τ( )τ ( ( ))b b=( )τ .
It is clear that 0 ≤ τ < ∞ and = τ2 1τ +et .
Then,

 τ β τξ( )τ 1
2

(τ ( )),g q=( )τ
2

 (17)

The hitting density (17) can be found using the 
method of heat potentials by writing the solution for 
q(τ, ξ), differentiating it over ξ, and computing the limit 
at β(τ). Using Theorem 1 from Lipton and Kaushansky 
(2019), we can write the final formula for the hitting 
density

( )

( ( ) )expx
( ( ) )

( 1)
2

( 1)

( )
( 1)

( )
8

1
( ( ) ( ))

( )
expx

( ( ) ( ))
2( )

( ) ( )

( )
,

2

2

2 31)

2

2

2

2 2( ( ) ( ))

30∫0

= −
−)expx +⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

π(

+( )−
π(

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
ν +( )

π

− β τ(( − β
′

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− β(((( − β
τ − ′τ

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠
ν ′ −) ν(

′
′τ

′

τ

g t(

b t)
b t)

t

e b
e e

dτ

t
t

t

t
t

t

t

 
  (18)

where

 

d

z

∫ν +
β τ − β ′ − β τ − β ′

τ − ′τ
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠
ν ′

τ − ′τ
′τdd

+
− β τ −

τ
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

πτ
=

τ
( )τ

( ( )β τ ( )′τ′ )e p
( ( )β τ ( )′τ )

2( )
( )′τ

2 (π )

expx
( ( )β τ )

2

2
0.

2

30∫∫
2

  

(19)

An example of the transformed boundary, for the 
case of the f lat boundary, is given in Exhibit 9. Tr   ans-

formation of a Standard OU Process to a Wiener 

Process (Backward).

Alternatively, we can solve the backward problem:

 
= −

=

G T zG T G+ T

G T z

G T b T t−

t zT zG zz( ,tt , )zz ( ,t , )z
1
2

( ,t , )z ,

(0, ,T ) 0= ,

( ,t , (b )) 1,  (20)

By the same token as before, we introduce

τ = ϖ = − =

τ =

−
−( )

1
2

inh( ),

ˆ sinh( ), 0
1
2

, ,

2e
e tsinh(

T e= T x≤ τ <), 0 , e z

t
t

T t−h( )
1

T ≤ τ <≤)
1

and rewrite (20) as follows

 

=

=

τ β − τ =

β τ = τ

τGτ G x

G

G Tβ

b T

xx( ,τ(τ )
1
2

( ,τ(τ ),

(0, )x 0,

(ττ ( ˆ )) 1,

)τ 1 2− ( )−T t ,  (21)

E X H I B I T  9
Moving Boundary β(τ) for (16)
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It is clear that 0 ≤ τ < 1 ⁄ 2, and = τ− 1 2−e t . It is 
worth noting that for the backward problem the com-
putational domain is compactified in the τ direction.

The backward problem is particularly useful when 
b(t) ≡ b since the problem does not depend on T in this 
case. We show the moving boundary for different values 
of b in Exhibit 10.

Using   the method of heat potentials, Lipton and 
Kaushansky (2019) (Theorem 2) derived the expression 
for G(τ, x):

∫=
− ′ − − ′

τ − ′τ
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠
ν ′

τ − ′τ
′τ

τ

G x

b
b

dτ

b

( ,τ(τ )

( 1x b− 2 )′τ′ p
( 1x b− 2 )′τ

2( )
( )′τ

2 (π )
,

2

30∫∫  
  

(22)

where

∫

ν

−
π

− − ′τ −
− ′τ −

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠
ν ′

− ′τ + − τ − ′τ
′τ −′

τ
b

b

dτ

b

b

( )τ

2
expx

( 1 2 1′τ −′ 2 )τ
( 1 2 1′τ +′ 2 )τ

( )′τ

( 1 2 1′τ +′ 2 )τ
1 0= .

2

0∫∫  
  

(23)

Once (23) is solved, G(τ, x) and G(t, z) can be cal-
culated by virtue of (22) in a straightforward fashion.

Numerical Results

Equations (18), (19), (22), and (23) can be solved 
using numerical methods from Lipton and Kaushansky 
(2018) and Lipton and Kaushansky (2019).

In this section, we consider four examples. First, 
we consider the case of the standard OU process with a 
f lat boundary. Next, we consider two examples of time-
dependent periodic boundaries, and finally we consider 
the boundary of the form b(t) = Ae−t + Bet, for which the 
closed-form solution is available.

In our first example, we choose T = 2, z = 5, and 
consider a f lat barrier b = 2 for the standard OU process.

In Exhibit 11, we show the hitting density and 
corresponding CDF. In Exhibit 12, we show the density 
functions ν(t).

Next, we c    onsider an example with a non-f lat 
periodic boundary. Consider T = 2, b(t) = 0.01sin10t, 
and z = 2. The boundary is a periodic function, which 
f luctuates around 0. We compare the results with b ≡ 0.

In Exhibit 13, we show the hitting density and 
corresponding CDF. We can see that there is a small 
difference in g(t), while G(t) are visually indistinguishable.

Next, we consider the same parameters with 
b(t) = −0.1sin10t. In this case, the f luctuations are more 
significant and have a larger impact on g(t) and G(t). The 
results are given in Exhibit 14.

Next, we con  sider T = 1, z = 1, and b(t) = 0.1e−t − 
0.1et. As discussed in Lipton and Kaushansky (2019), after 
the change of variables, this problem transforms to the 
problem for Brownian motion with a linear boundary, 
and can be easily solved analytically. In Exhibit 15, we 
compare our results with the closed-form solution and 
observe that they are visually indistinguishable.

CONCLUSION

In   this articl e, we have demonstrated the power of 
the method of heat potentials by solving three classical 
problems of financial mathematics: (A) pricing of the 
American put, (B) calibrating the default boundary in 
a structural default model, and (C) describing the first 
hitting time for an Ornstein–Uhlenbeck process. For 
all three problems, we found a semi-analytical solution. 
In all cases we reduced the original problem to the IBVP 
for a heat equation with a moving boundary, and applied 
the method of heat potentials to obtain a coupled system 
of Volterra integral equations of the second kind. The 
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Moving Boundary β(τ) for (21)
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resulting system is much easier to solve numerically than 
the original problem.

For all three problems, we developed numerical 
methods for solving the coupled system of Volterra 
integral equations, and compared our solutions with 
solutions obtained by other known methods.

Our results clearly show that there are a lot of 
problems in mathematical finance, which can be effi-
ciently solved using the method of heat potentials. Other 
problems will be examined elsewhere.

One novel result worth mentioning is that a cur-
vilinear square-root-like default boundary capable of 
producing nontrivial default probability for the struc-
tural default model does exist.

E X H I B I T  1 1
(A) Density Function g(t); (B) Cumulative Density Function G(t) for a Flat Boundary
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E X H I B I T  1 3
(A) Density Function; (B) Cumulative Density Function g(t) for b(t) = 0.01sin10t

E X H I B I T  1 4
(A) Density Function g(t); (B) Cumulative Density Function g(t) for b(T) = − 0.1sin10t
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A P P E N D I X  A

DER IVATION OF THE LIMITS IN THE 
METHOD OF HEAT POTENTIALS

Let u(t, x) be  defined as follows:

∫=
′ − ′

′
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
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νν ′ ′( , )

( ( ))expx
( ( ))

2( )

2 (π )
( ) .

2
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b− t
t t−

t t−
t d′)′ t

t

We need to calculate u(t, b(t)), or the limit of u(t, b(t) + ε) 
when ε → + 0. We also need to calculate ux(t, b(t)), or the limit 
of ux(t, b(t) + ε) when ε → + 0.

To this end, we write

M M
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Since the second integrand has integrable singularity, 
we have
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We can drop non-singular terms approaching unity and 
simplify the first limit as follows:
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E X H I B I T  1 5
The Case with Time-Dependent Boundary b(t) = 0.1e−t − 0.1et: Analytical and Numerical Solutions 
(A) Density Function g(t); (B) CDF G(t)
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We can write

ν ′ ν + − Ψ ′
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and split the above integrand into a singular part and a part 
with integrable singularity, which vanishes in the limit, 
so that

M t t

t t
dt

t

∫= ν ε
− ε

′
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−t ′
′( )

ε→
( )t lim

expx
2( )

2 (π )
.

0

2

30∫∫

The first change of variables (t − t′) ⁄ε2 → u yields:
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The second change of variables u → 1 ⁄ ν2 yields:
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We analyze the limit limε→0 ux(t, b(t) + ε) by the same 
token. We have
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We can drop non-singular terms approaching unity and sim-
plify the above formula as follows:
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Consider L (1). The first change of variables yields:
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The second change of variables yields
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Next,
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because the singularity is integrable,
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in view of our derivation of the expression for L (1). The next 
integral can be computed by the same token as L (1),
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Combining all the terms, we get
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Valuing Credit Default Swaps I
No Counterparty Default Risk
JOHN C. HULL AND ALAN D WHITE

The Journal of Derivatives
https://jod.pm-research.com/content/8/1/29

ABSTRACT: One of the fastest growing areas of both derivatives 
trading and research right now is in contracts based on credit risk. The 
credit default swap is a standard instrument, offering the possibility of 
hedging against default by the issuer of an underlying bond. Several 
existing valuation methodologies differ in their assumptions about the 
payoff in case of a credit event. In this article, Hull and White present 
an approach based on the realistic assumption that the amount bond-
holders will claim in a default is based on the difference between the 
bond&’s post-default market value and its face value. An important 
contribution of this article is to use the term structure of risk-neutral 
implied default probabilities obtained from market prices for a set of 
bonds of the same issuer. The dependence of swap values on assumed 
recovery rates and the shape of the yield curve are explored.

Valuing Credit Default Swaps II
Modeling Default Correlations
John C Hull and Alan D White
The Journal of Derivatives 
https://jod.pm-research.com/content/8/3/12

ABSTRACT: “In the Fall 2000, Journal of Derivatives, Hull and 
White presented a model for pricing credit default swaps based on the 
realistic assumption that in a default the bondholders will claim the 
difference between the bond&’s post-default market value and its face 
value. An important feature of the approach is the use of market prices 
for a set of bonds from the same issuer to obtain a term structure of risk-
neutral implied default probabilities. This article extends the model 
significantly to allow for the existence of multiple correlated default 
risks. Correlations are important either when the swap is subject to 
counterparty credit risk, or when there are multiple underlyings with 
correlated risks, as in a basket default swap.”
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